144 research outputs found

    Malicious code detection architecture inspired by human immune system

    Full text link
    Malicious code is a threat to computer systems globally. In this paper, we outline the evolution of malicious code attacks. The threat is evolving, leaving challenges for attackers to improve attack techniques and for researchers and security specialists to improve detection accuracy. We present a novel architecture for an effective defense against malicious code attack, inspired by the human immune system. We introduce two phases of program execution: Adolescent and Mature Phase. The first phase uses a malware profile matching mechanism, whereas the second phase uses a program profile matching mechanism. Both mechanisms are analogous to the innate immune syste

    BIOLOGICAL INSPIRED INTRUSION PREVENTION AND SELF-HEALING SYSTEM FOR CRITICAL SERVICES NETWORK

    Get PDF
    With the explosive development of the critical services network systems and Internet, the need for networks security systems have become even critical with the enlargement of information technology in everyday life. Intrusion Prevention System (IPS) provides an in-line mechanism focus on identifying and blocking malicious network activity in real time. This thesis presents new intrusion prevention and self-healing system (SH) for critical services network security. The design features of the proposed system are inspired by the human immune system, integrated with pattern recognition nonlinear classification algorithm and machine learning. Firstly, the current intrusions preventions systems, biological innate and adaptive immune systems, autonomic computing and self-healing mechanisms are studied and analyzed. The importance of intrusion prevention system recommends that artificial immune systems (AIS) should incorporate abstraction models from innate, adaptive immune system, pattern recognition, machine learning and self-healing mechanisms to present autonomous IPS system with fast and high accurate detection and prevention performance and survivability for critical services network system. Secondly, specification language, system design, mathematical and computational models for IPS and SH system are established, which are based upon nonlinear classification, prevention predictability trust, analysis, self-adaptation and self-healing algorithms. Finally, the validation of the system carried out by simulation tests, measuring, benchmarking and comparative studies. New benchmarking metrics for detection capabilities, prevention predictability trust and self-healing reliability are introduced as contributions for the IPS and SH system measuring and validation. Using the software system, design theories, AIS features, new nonlinear classification algorithm, and self-healing system show how the use of presented systems can ensure safety for critical services networks and heal the damage caused by intrusion. This autonomous system improves the performance of the current intrusion prevention system and carries on system continuity by using self-healing mechanism

    An evolutionary computing model for the study of within-host evolution

    Get PDF
    Evolution of an individual within another individual is known as within-host dynamics (WHD). The most common modeling technique to study WHD involves ordinary differential equations (ODEs). In the field of biology, models of this kind assume, for example, that both the number of viruses and the number of mouse cells susceptible to being infected change according to their interaction as stated in the ODE model. However, viruses can undergo mutations and, consequently, evolve inside the mouse, whereas the mouse, in turn, displays evolutionary mechanisms through its immune system (e.g., clonal selection), defending against the invading virus. In this work, as the main novelty, we propose an evolutionary WHD model simulating the coexistence of an evolving invader within a host. In addition, instead of using ODEs we developed an alternative methodology consisting of the hybridization of a genetic algorithm with an artificial immune system. Aside from the model, interest in biology, and its potential clinical use, the proposed WHD model may be useful in those cases where the invader exhibits evolutionary changes, for instance, in the design of anti-virus software, intrusion detection algorithms in a corporation’s computer systems, etc. The model successfully simulates two intruder detection paradigms (i.e., humoral detection, danger detection) in which the intruder represents an evolving invader or guest (e.g., virus, computer program,) that infects a host (e.g., mouse, computer memory). The obtained results open up the possibility of simulating environments in which two entities (guest versus host) compete evolutionarily with each other when occupying the same space (e.g., organ cells, computer memory, network

    A SOM+ Diagnostic System for Network Intrusion Detection

    Get PDF
    This research created a new theoretical Soft Computing (SC) hybridized network intrusion detection diagnostic system including complex hybridization of a 3D full color Self-Organizing Map (SOM), Artificial Immune System Danger Theory (AISDT), and a Fuzzy Inference System (FIS). This SOM+ diagnostic archetype includes newly defined intrusion types to facilitate diagnostic analysis, a descriptive computational model, and an Invisible Mobile Network Bridge (IMNB) to collect data, while maintaining compatibility with traditional packet analysis. This system is modular, multitaskable, scalable, intuitive, adaptable to quickly changing scenarios, and uses relatively few resources

    Fault Detection and Isolation of Wind Turbines using Immune System Inspired Algorithms

    Get PDF
    Recently, the research focus on renewable sources of energy has been growing intensively. This is mainly due to potential depletion of fossil fuels and its associated environmental concerns, such as pollution and greenhouse gas emissions. Wind energy is one of the fastest growing sources of renewable energy, and policy makers in both developing and developed countries have built their vision on future energy supply based on and by emphasizing the wind power. The increase in the number of wind turbines, as well as their size, have led to undeniable care and attention to health and condition monitoring as well as fault diagnosis of wind turbine systems and their components. In this thesis, two main immune inspired algorithms are used to perform Fault Detection and Isolation (FDI) of a Wind Turbine (WT), namely the Negative Selection Algorithm (NSA) as well as the Dendritic Cell Algorithm (DCA). First, an NSA-based fault diagnosis methodology is proposed in which a hierarchical bank of NSAs is used to detect and isolate both individual as well as simultaneously occurring faults common to the wind turbines. A smoothing moving window filter is then utilized to further improve the reliability and performance of the proposed FDI scheme. Moreover, the performance of the proposed scheme is compared with the state-of-the-art data-driven technique, namely Support Vector Machine (SVM) to demonstrate and illustrate the superiority and advantages of the proposed NSA-based FDI scheme. Finally, a nonparametric statistical comparison test is implemented to evaluate the proposed methodology with that of the SVM under various fault severities. In the second part, another immune inspired methodology, namely the Dendritic Cell Algorithm (DCA) is used to perform online sensor fault FDI. A noise filter is also designed to attenuate the measurement noise, resulting in better FDI results. The proposed DCA-based FDI scheme is then compared with the previously developed NSA-based FDI scheme, and a nonparametric statistical comparison test is also performed. Both of the proposed immune inspired frameworks are applied to a well-known wind turbine benchmark model in order to validate the effectiveness of the proposed methodologies

    Behavioural correlation for malicious bot detection

    Get PDF
    Over the past few years, IRC bots, malicious programs which are remotely controlled by the attacker, have become a major threat to the Internet and its users. These bots can be used in different malicious ways such as to launch distributed denial of service (DDoS) attacks to shutdown other networks and services. New bots are implemented with extended features such as keystrokes logging, spamming, traffic sniffing, which cause serious disruption to targeted networks and users. In response to these threats, there is a growing demand for effective techniques to detect the presence of bots/botnets. Currently existing approaches detect botnets rather than individual bots. In our work we present a host-based behavioural approach for detecting bots/botnets based on correlating different activities generated by bots by monitoring function calls within a specified time window. Different correlation algorithms have been used in this work to achieve the required task. We start our work by detecting IRC bots' behaviours using a simple correlation algorithm. A more intelligent approach to understand correlating activities is also used as a major part of this work. Our intelligent algorithm is inspired by the immune system. Although the intelligent approach produces an anomaly value for the classification of processes, it generates false positive alarms if not enough data is provided. In order to solve this problem, we introduce a modified anomaly value which reduces the amount of false positives generated by the original anomaly value. We also extend our work to detect peer to peer (P2P) bots which are the upcoming threat to Internet security due to the fact that P2P bots do not have a centralized point to shutdown or traceback, thus making the detection of P2P bots a real challenge. Our evaluation shows that correlating different activities generated by IRC/P2P bots within a specified time period achieves high detection accuracy. In addition, using an intelligent correlation algorithm not only states if an anomaly is present, but it also names the culprit responsible for the anomaly
    • …
    corecore