106 research outputs found

    On the Fundamental Limits of Random Non-orthogonal Multiple Access in Cellular Massive IoT

    Get PDF
    Machine-to-machine (M2M) constitutes the communication paradigm at the basis of Internet of Things (IoT) vision. M2M solutions allow billions of multi-role devices to communicate with each other or with the underlying data transport infrastructure without, or with minimal, human intervention. Current solutions for wireless transmissions originally designed for human-based applications thus require a substantial shift to cope with the capacity issues in managing a huge amount of M2M devices. In this paper, we consider the multiple access techniques as promising solutions to support a large number of devices in cellular systems with limited radio resources. We focus on non-orthogonal multiple access (NOMA) where, with the aim to increase the channel efficiency, the devices share the same radio resources for their data transmission. This has been shown to provide optimal throughput from an information theoretic point of view.We consider a realistic system model and characterise the system performance in terms of throughput and energy efficiency in a NOMA scenario with a random packet arrival model, where we also derive the stability condition for the system to guarantee the performance.Comment: To appear in IEEE JSAC Special Issue on Non-Orthogonal Multiple Access for 5G System

    Performance Analysis of NOMA Multicast Systems Based on Rateless Codes with Delay Constraints

    Get PDF
    To achieve an efficient and reliable data transmission in time-varying conditions, a novel non-orthogonal multiple access (NOMA) transmission scheme based on rateless codes (NOMA-RC) is proposed in the multicast system in this paper. Using rateless codes at the packet level, the system can generate enough encoded data packets according to users’ requirements to cope with adverse environments. The performance of the NOMA-RC multicast system with delay constraints is analyzed over Rayleigh fading channels. The closed-form expressions for the frame error ratio and the average transmission time are derived for two cases which are a broadcast communication scenario (Scenario 1) and a relay communication scenario (Scenario 2). Under the condition that the quality of service for the edge user is satisfied, an optimization model of power allocation is established to maximize the sum rate. Simulation results show that Scenario 2 can provide better block error ratio performance and exhibit less transmission time than Scenario 1. When compared with orthogonal multiple access (OMA) with rateless codes system, the proposed system can save on the transmission time and improve the system throughput

    On Tunable Sparse Network Coding in Commercial Devices for Networks and Filesystems

    Get PDF

    逐次干渉除去を用いた多元接続システムのパワー割り当てに関する研究

    Get PDF
    In future wireless communication networks, the number of devices is likely to increase dramatically due to potential development of new applications such as the Internet of Things (IoT). Consequently, radio access network is required to support multiple access of massive users and achieve high spectral efficiency. From the information theoretic perspective, orthogonal multiple access protocols are suboptimal. To achieve the multiple access capacity, non-orthogonal multiple access protocols and multiuser detection (MUD) are required. For the non-orthogonal code-division multiple access (CDMA), several MUD techniques have been proposed to improve the spectrum efficiency. Successive interference cancellation (SIC) is a promising MUD techniques due to its low complexity and good decoding performance. Random access protocols are designed for the system with bursty traffic to reduce the delay, compared to the channelized multiple access. Since the users contend for the channel instead of being assigned by the base station (BS), collisions happen with a certain probability. If the traffic load becomes relatively high, the throughput of these schemes steeply falls down because of collisions. However, it has been well-recognized that more complex procedures can permit decoding of interfering signals, which is referred to as multi-packet reception (MPR). Also, an SIC decoder might decode more packets by successively subtracting the correctly decoded packets from the collision. Cognitive radio (CR) is an emerging technology to solve the problem of spectrum scarcity by dynamically sharing the spectrum. In the CR networks, the secondary users (SUs) are allowed to dynamically share the frequency bands with primary users (PUs) under primary quality-of-service (QoS) protection such as the constraint of interference temperature at the primary base station (PBS). For the uplink multiple access to the secondary base station (SBS), transmit power allocation for the SUs is critical to control the interference temperature at the PBS. Transmit power allocation has been extensively studied in various multiple access scenarios. The power allocation algorithms can be classified into two types, depending on whether the process is controlled by the base station (BS). For the centralized power allocation (CPA) algorithms, the BS allocates the transmit powers to the users through the downlink channels. For the random access protocols, there are also efforts on decentralized power allocation (DPA) that the users select transmit powers according to given distributions of power and probability, instead of being assigned the transmit power at each time slot by the BS. In this dissertation, the DPA algorithms for the random access protocols with SIC are investigated and new methods are proposed. First a decentralized multilevel power allocation algorithm to improve the MAC throughput performance is proposed, for the general SIC receiver that can decode multiple packets from one collision. Then an improved DPA algorithm to maximize the overall system sum rate is proposed, taking into account of both the MAC layer and PHY layer. Finally, a DPA algorithm for the CR secondary random access is proposed, considering the constraint of interference temperature and the practical assumption of imperfect cancellation. An opportunistic transmission protocol for the fading environment to further reduce the interference temperature is also proposed. For the future work, the optimal DPA for the random access with the SIC receiver is still an open problem. Besides, advanced multiple access schemes that aim to approach the multiple access capacity by combining the advantages of the network coded cooperation, the repetition slotted ALOHA, and the SIC receiver are also interesting.電気通信大学201

    Towards reliable communication in LTE-A connected heterogeneous machine to machine network

    Get PDF
    Machine to machine (M2M) communication is an emerging technology that enables heterogeneous devices to communicate with each other without human intervention and thus forming so-called Internet of Things (IoTs). Wireless cellular networks (WCNs) play a significant role in the successful deployment of M2M communication. Specially the ongoing massive deployment of long term evolution advanced (LTE-A) makes it possible to establish machine type communication (MTC) in most urban and remote areas, and by using LTE-A backhaul network, a seamless network communication is being established between MTC-devices and-applications. However, the extensive network coverage does not ensure a successful implementation of M2M communication in the LTE-A, and therefore there are still some challenges. Energy efficient reliable transmission is perhaps the most compelling demand for various M2M applications. Among the factors affecting reliability of M2M communication are the high endto-end delay and high bit error rate. The objective of the thesis is to provide reliable M2M communication in LTE-A network. In this aim, to alleviate the signalling congestion on air interface and efficient data aggregation we consider a cluster based architecture where the MTC devices are grouped into number of clusters and traffics are forwarded through some special nodes called cluster heads (CHs) to the base station (BS) using single or multi-hop transmissions. In many deployment scenarios, some machines are allowed to move and change their location in the deployment area with very low mobility. In practice, the performance of data transmission often degrades with the increase of distance between neighboring CHs. CH needs to be reselected in such cases. However, frequent re-selection of CHs results in counter effect on routing and reconfiguration of resource allocation associated with CH-dependent protocols. In addition, the link quality between a CH-CH and CH-BS are very often affected by various dynamic environmental factors such as heat and humidity, obstacles and RF interferences. Since CH aggregates the traffic from all cluster members, failure of the CH means that the full cluster will fail. Many solutions have been proposed to combat with error prone wireless channel such as automatic repeat request (ARQ) and multipath routing. Though the above mentioned techniques improve the communication reliability but intervene the communication efficiency. In the former scheme, the transmitter retransmits the whole packet even though the part of the packet has been received correctly and in the later one, the receiver may receive the same information from multiple paths; thus both techniques are bandwidth and energy inefficient. In addition, with retransmission, overall end to end delay may exceed the maximum allowable delay budget. Based on the aforementioned observations, we identify CH-to-CH channel is one of the bottlenecks to provide reliable communication in cluster based multihop M2M network and present a full solution to support fountain coded cooperative communications. Our solution covers many aspects from relay selection to cooperative formation to meet the user’s QoS requirements. In the first part of the thesis, we first design a rateless-coded-incremental-relay selection (RCIRS) algorithm based on greedy techniques to guarantee the required data rate with a minimum cost. After that, we develop fountain coded cooperative communication protocols to facilitate the data transmission between two neighbor CHs. In the second part, we propose joint network and fountain coding schemes for reliable communication. Through coupling channel coding and network coding simultaneously in the physical layer, joint network and fountain coding schemes efficiently exploit the redundancy of both codes and effectively combat the detrimental effect of fading conditions in wireless channels. In the proposed scheme, after correctly decoding the information from different sources, a relay node applies network and fountain coding on the received signals and then transmits to the destination in a single transmission. Therefore, the proposed schemes exploit the diversity and coding gain to improve the system performance. In the third part, we focus on the reliable uplink transmission between CHs and BS where CHs transmit to BS directly or with the help of the LTE-A relay nodes (RN). We investigate both type-I and type-II enhanced LTE-A networks and propose a set of joint network and fountain coding schemes to enhance the link robustness. Finally, the proposed solutions are evaluated through extensive numerical simulations and the numerical results are presented to provide a comparison with the related works found in the literature

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    M2M Networking Architecture for Data Transmission and Routing

    Get PDF
    We propose a percolation based M2M networking architecture and its data transmission method. The proposed network architecture can be server free and router free, which allows us to operate routing efficiently with percolations based on six degrees of separation theory in small world network modeling. The data transmission can be divided into two phases routing and data transmission phase. In the routing phase, probe packets will be transmitted and forwarded in the network thus path selections are performed based on small world strategy. In the second phase, the information will be encoded, say, with the fountain codes, and transmitted using the paths selected at the first phase. In such a way, an efficient routing and data transmission mechanism can be built, allowing us to construct a low cost, flexible and ubiquitous network. Such a networking architecture and data transmission can be used in many M2M communications, such as the stub network of internet of things, and deep space networking, and so on. Soujanya Ambala | Dr. Srinivas Ambala | Sreedhar Ambala "M2M Networking Architecture for Data Transmission and Routing" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-1 | Issue-1 , December 201

    Capacity Approaching Coding Strategies for Machine-to-Machine Communication in IoT Networks

    Get PDF
    Radio access technologies for mobile communications are characterized by multiple access (MA) strategies. Orthogonal MA techniques were a reasonable choice for achieving good performance with single user detection. With the tremendous growth in the number of mobile users and the new internet of things (IoT) shifting paradigm, it is expected that the monthly mobile data traffic worldwide will exceed 24.3 exabytes by 2019, over 100 billion IoT connections by 2025, and the financial impact of IoT on the global economy varies in the range of 3.9 to 11.1 trillion dollars by 2025. In light of the envisaged exponential growth and new trends, one promising solution to further enhance data rates without increasing the bandwidth is by increasing the spectral efficiency of the channel. Non-orthogonal MA techniques are potential candidates for future wireless communications. The two corner points on the boundary region of the MA channel are known to be achievable by single user decoding followed by successive decoding (SD). Other points can also be achieved using time sharing or rate splitting. On the other hand, machine-to-machine (M2M) communication which is an enabling technology for the IoT, enables massive multipurpose networked devices to exchange information among themselves with minor or no human intervention. This thesis consists of three main parts. In the first part, we propose new practical encoding and joint belief propagation (BP) decoding techniques for 2-user MA erasure channel (MAEC) that achieve any rate pair close to the boundary of the capacity region without using time sharing nor rate splitting. While at the encoders, the corresponding parity check matrices are randomly built from a half-rate LDPC matrix, the joint BP decoder employs the associated Tanner graphs of the parity check matrices to iteratively recover the erasures in the received combined codewords. Specifically, the joint decoder performs two steps in each decoding iteration: 1) simultaneously and independently runs the BP decoding process at each constituent sub-graph to recover some of the common erasures, 2) update the other sub-graph with newly recovered erasures and vice versa. When the number of erasures in the received combined codewords is less than or equal to the number of parity check constraints, the decoder may successfully decode both codewords, otherwise the decoder declares decoding failure. Furthermore, we calculate the probability of decoding failure and the outage capacity. Additionally, we show how the erasure probability evolves with the number of decoding iterations and the maximum tolerable loss. Simulations show that any rate pair close to the capacity boundary is achievable without using time sharing. In the second part, we propose a new cooperative joint network and rateless coding strategy for machine-type communication (MTC) devices in the multicast settings where three or more MTC devices dynamically form a cluster to disseminate messages between themselves. Specifically, in the basic cluster, three MTC devices transmit their respective messages simultaneously to the relay in the first phase. The relay broadcasts back the combined messages to all MTC devices within the basic cluster in the second phase. Given the fact that each MTC device can remove its own message, the received signal in the second phase is reduced to the combined messages coming from the other two MTC devices. Hence, this results in exploiting the interference caused by one message on the other and therefore improving the bandwidth efficiency. Furthermore, each group of three MTC devices in vicinity can form a basic cluster for exchanging messages, and the basic scheme extends to N MTC devices. Furthermore, we propose an efficient algorithm to disseminate messages among a large number of MTC devices. Moreover, we implement the proposed scheme employing practical Raptor codes with the use of two relaying schemes, namely amplify and forward (AF) and de-noise and forward (DNF). We show that with very little processing at the relay using DNF relaying scheme, performance can be further enhanced. We also show that the proposed scheme achieves a near optimal sum rate performance. In the third part, we present a comparative study of joint channel estimation and decoding of factor graph-based codes over flat fading channels and propose a simple channel approximation scheme that performs close to the optimal technique. Specifically, when channel state information (CSI) is not available at the receiver, a simpler approach is to estimate the channel state of a group of received symbols, then use the approximated value of the channel with the received signal to compute the log likelihood ratio. Simulation results show that the proposed scheme exhibits about 0.4 dB loss compared to the optimal solution when perfect CSI is available at the receiver
    corecore