907 research outputs found

    The simultaneous localization and mapping (SLAM):An overview

    Get PDF
    Positioning is a need for many applications related to mapping and navigation either in civilian or military domains. The significant developments in satellite-based techniques, sensors, telecommunications, computer hardware and software, image processing, etc. positively influenced to solve the positioning problem efficiently and instantaneously. Accordingly, the mentioned development empowered the applications and advancement of autonomous navigation. One of the most interesting developed positioning techniques is what is called in robotics as the Simultaneous Localization and Mapping SLAM. The SLAM problem solution has witnessed a quick improvement in the last decades either using active sensors like the RAdio Detection And Ranging (Radar) and Light Detection and Ranging (LiDAR) or passive sensors like cameras. Definitely, positioning and mapping is one of the main tasks for Geomatics engineers, and therefore it's of high importance for them to understand the SLAM topic which is not easy because of the huge documentation and algorithms available and the various SLAM solutions in terms of the mathematical models, complexity, the sensors used, and the type of applications. In this paper, a clear and simplified explanation is introduced about SLAM from a Geomatical viewpoint avoiding going into the complicated algorithmic details behind the presented techniques. In this way, a general overview of SLAM is presented showing the relationship between its different components and stages like the core part of the front-end and back-end and their relation to the SLAM paradigm. Furthermore, we explain the major mathematical techniques of filtering and pose graph optimization either using visual or LiDAR SLAM and introduce a summary of the deep learning efficient contribution to the SLAM problem. Finally, we address examples of some existing practical applications of SLAM in our reality

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Topological place recognition for life-long visual localization

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2016-2017La navegación de vehículos inteligentes o robots móviles en períodos largos de tiempo ha experimentado un gran interés por parte de la comunidad investigadora en los últimos años. Los sistemas basados en cámaras se han extendido ampliamente en el pasado reciente gracias a las mejoras en sus características, precio y reducción de tamaño, añadidos a los progresos en técnicas de visión artificial. Por ello, la localización basada en visión es una aspecto clave para desarrollar una navegación autónoma robusta en situaciones a largo plazo. Teniendo en cuenta esto, la identificación de localizaciones por medio de técnicas de reconocimiento de lugar topológicas puede ser complementaria a otros enfoques como son las soluciones basadas en el Global Positioning System (GPS), o incluso suplementaria cuando la señal GPS no está disponible.El estado del arte en reconocimiento de lugar topológico ha mostrado un funcionamiento satisfactorio en el corto plazo. Sin embargo, la localización visual a largo plazo es problemática debido a los grandes cambios de apariencia que un lugar sufre como consecuencia de elementos dinámicos, la iluminación o la climatología, entre otros. El objetivo de esta tesis es enfrentarse a las dificultades de llevar a cabo una localización topológica eficiente y robusta a lo largo del tiempo. En consecuencia, se van a contribuir dos nuevos enfoques basados en reconocimiento visual de lugar para resolver los diferentes problemas asociados a una localización visual a largo plazo. Por un lado, un método de reconocimiento de lugar visual basado en descriptores binarios es propuesto. La innovación de este enfoque reside en la descripción global de secuencias de imágenes como códigos binarios, que son extraídos mediante un descriptor basado en la técnica denominada Local Difference Binary (LDB). Los descriptores son eficientemente asociados usando la distancia de Hamming y un método de búsqueda conocido como Approximate Nearest Neighbors (ANN). Además, una técnica de iluminación invariante es aplicada para mejorar el funcionamiento en condiciones luminosas cambiantes. El empleo de la descripción binaria previamente introducida proporciona una reducción de los costes computacionales y de memoria.Por otro lado, también se presenta un método de reconocimiento de lugar visual basado en deep learning, en el cual los descriptores aplicados son procesados por una Convolutional Neural Network (CNN). Este es un concepto recientemente popularizado en visión artificial que ha obtenido resultados impresionantes en problemas de clasificación de imagen. La novedad de nuestro enfoque reside en la fusión de la información de imagen de múltiples capas convolucionales a varios niveles y granularidades. Además, los datos redundantes de los descriptores basados en CNNs son comprimidos en un número reducido de bits para una localización más eficiente. El descriptor final es condensado aplicando técnicas de compresión y binarización para realizar una asociación usando de nuevo la distancia de Hamming. En términos generales, los métodos centrados en CNNs mejoran la precisión generando representaciones visuales de las localizaciones más detalladas, pero son más costosos en términos de computación.Ambos enfoques de reconocimiento de lugar visual son extensamente evaluados sobre varios datasets públicos. Estas pruebas arrojan una precisión satisfactoria en situaciones a largo plazo, como es corroborado por los resultados mostrados, que comparan nuestros métodos contra los principales algoritmos del estado del arte, mostrando mejores resultados para todos los casos.Además, también se ha analizado la aplicabilidad de nuestro reconocimiento de lugar topológico en diferentes problemas de localización. Estas aplicaciones incluyen la detección de cierres de lazo basada en los lugares reconocidos o la corrección de la deriva acumulada en odometría visual usando la información proporcionada por los cierres de lazo. Asimismo, también se consideran las aplicaciones de la detección de cambios geométricos a lo largo de las estaciones del año, que son esenciales para las actualizaciones de los mapas en sistemas de conducción autónomos centrados en una operación a largo plazo. Todas estas contribuciones son discutidas al final de la tesis, incluyendo varias conclusiones sobre el trabajo presentado y líneas de investigación futuras

    Robust state estimation methods for robotics applications

    Get PDF
    State estimation is an integral component of any autonomous robotic system. Finding the correct position, velocity, and orientation of an agent in its environment enables it to do other tasks like mapping and interacting with the environment, and collaborating with other agents. State estimation is achieved by using data obtained from multiple sensors and fusing them in a probabilistic framework. These include inertial data from Inertial Measurement Unit (IMU), images from camera, range data from lidars, and positioning data from Global Navigation Satellite Systems (GNSS) receivers. The main challenge faced in sensor-based state estimation is the presence of noisy, erroneous, and even lack of informative data. Some common examples of such situations include wrong feature matching between images or point clouds, false loop-closures due to perceptual aliasing (different places that look similar can confuse the robot), presence of dynamic objects in the environment (odometry algorithms assume a static environment), multipath errors for GNSS (signals for satellites jumping off tall structures like buildings before reaching receivers) and more. This work studies existing and new ways of how standard estimation algorithms like the Kalman filter and factor graphs can be made robust to such adverse conditions without losing performance in ideal outlier-free conditions. The first part of this work demonstrates the importance of robust Kalman filters on wheel-inertial odometry for high-slip terrain. Next, inertial data is integrated into GNSS factor graphs to improve the accuracy and robustness of GNSS factor graphs. Lastly, a combined framework for improving the robustness of non-linear least squares and estimating the inlier noise threshold is proposed and tested with point cloud registration and lidar-inertial odometry algorithms followed by an algorithmic analysis of optimizing generalized robust cost functions with factor graphs for GNSS positioning problem
    corecore