26,840 research outputs found

    Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction

    Get PDF
    Determining the optimal number of hidden nodes and their proper initial locations are essentially crucial before the wavelet neural networks (WNNs) start their learning process. In this paper, a novel strategy known as the modified cuckoo search algorithm (MCSA), is proposed for WNNs initialization in order to improve its generalization performance. The MCSA begins with an initial population of cuckoo eggs, which represent the translation vectors of the wavelet hidden nodes, and subsequently refines their locations by imitating the breeding mechanism of cuckoos. The resulting solutions from the MCSA are then used as the initial translation vectors for the WNNs. The feasibility of the proposed method is evaluated by forecasting a benchmark chaotic time series, and its superior prediction accuracy compared with that of conventional WNNs demonstrates its potential benefit

    A Review of Fault Diagnosing Methods in Power Transmission Systems

    Get PDF
    Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    Lattice dynamical wavelet neural networks implemented using particle swarm optimization for spatio-temporal system identification

    No full text
    In this brief, by combining an efficient wavelet representation with a coupled map lattice model, a new family of adaptive wavelet neural networks, called lattice dynamical wavelet neural networks (LDWNNs), is introduced for spatio-temporal system identification. A new orthogonal projection pursuit (OPP) method, coupled with a particle swarm optimization (PSO) algorithm, is proposed for augmenting the proposed network. A novel two-stage hybrid training scheme is developed for constructing a parsimonious network model. In the first stage, by applying the OPP algorithm, significant wavelet neurons are adaptively and successively recruited into the network, where adjustable parameters of the associated wavelet neurons are optimized using a particle swarm optimizer. The resultant network model, obtained in the first stage, however, may be redundant. In the second stage, an orthogonal least squares algorithm is then applied to refine and improve the initially trained network by removing redundant wavelet neurons from the network. An example for a real spatio-temporal system identification problem is presented to demonstrate the performance of the proposed new modeling framework

    Innovative Second-Generation Wavelets Construction With Recurrent Neural Networks for Solar Radiation Forecasting

    Full text link
    Solar radiation prediction is an important challenge for the electrical engineer because it is used to estimate the power developed by commercial photovoltaic modules. This paper deals with the problem of solar radiation prediction based on observed meteorological data. A 2-day forecast is obtained by using novel wavelet recurrent neural networks (WRNNs). In fact, these WRNNS are used to exploit the correlation between solar radiation and timescale-related variations of wind speed, humidity, and temperature. The input to the selected WRNN is provided by timescale-related bands of wavelet coefficients obtained from meteorological time series. The experimental setup available at the University of Catania, Italy, provided this information. The novelty of this approach is that the proposed WRNN performs the prediction in the wavelet domain and, in addition, also performs the inverse wavelet transform, giving the predicted signal as output. The obtained simulation results show a very low root-mean-square error compared to the results of the solar radiation prediction approaches obtained by hybrid neural networks reported in the recent literature

    Mosquito Detection with Neural Networks: The Buzz of Deep Learning

    Full text link
    Many real-world time-series analysis problems are characterised by scarce data. Solutions typically rely on hand-crafted features extracted from the time or frequency domain allied with classification or regression engines which condition on this (often low-dimensional) feature vector. The huge advances enjoyed by many application domains in recent years have been fuelled by the use of deep learning architectures trained on large data sets. This paper presents an application of deep learning for acoustic event detection in a challenging, data-scarce, real-world problem. Our candidate challenge is to accurately detect the presence of a mosquito from its acoustic signature. We develop convolutional neural networks (CNNs) operating on wavelet transformations of audio recordings. Furthermore, we interrogate the network's predictive power by visualising statistics of network-excitatory samples. These visualisations offer a deep insight into the relative informativeness of components in the detection problem. We include comparisons with conventional classifiers, conditioned on both hand-tuned and generic features, to stress the strength of automatic deep feature learning. Detection is achieved with performance metrics significantly surpassing those of existing algorithmic methods, as well as marginally exceeding those attained by individual human experts.Comment: For data and software related to this paper, see http://humbug.ac.uk/kiskin2017/. Submitted as a conference paper to ECML 201

    Transfer learning in ECG classification from human to horse using a novel parallel neural network architecture

    Get PDF
    Automatic or semi-automatic analysis of the equine electrocardiogram (eECG) is currently not possible because human or small animal ECG analysis software is unreliable due to a different ECG morphology in horses resulting from a different cardiac innervation. Both filtering, beat detection to classification for eECGs are currently poorly or not described in the literature. There are also no public databases available for eECGs as is the case for human ECGs. In this paper we propose the use of wavelet transforms for both filtering and QRS detection in eECGs. In addition, we propose a novel robust deep neural network using a parallel convolutional neural network architecture for ECG beat classification. The network was trained and tested using both the MIT-BIH arrhythmia and an own made eECG dataset with 26.440 beats on 4 classes: normal, premature ventricular contraction, premature atrial contraction and noise. The network was optimized using a genetic algorithm and an accuracy of 97.7% and 92.6% was achieved for the MIT-BIH and eECG database respectively. Afterwards, transfer learning from the MIT-BIH dataset to the eECG database was applied after which the average accuracy, recall, positive predictive value and F1 score of the network increased with an accuracy of 97.1%
    • …
    corecore