441 research outputs found

    Driver Behavior Analysis Based on Real On-Road Driving Data in the Design of Advanced Driving Assistance Systems

    Get PDF
    The number of vehicles on the roads increases every day. According to the National Highway Traffic Safety Administration (NHTSA), the overwhelming majority of serious crashes (over 94 percent) are caused by human error. The broad aim of this research is to develop a driver behavior model using real on-road data in the design of Advanced Driving Assistance Systems (ADASs). For several decades, these systems have been a focus of many researchers and vehicle manufacturers in order to increase vehicle and road safety and assist drivers in different driving situations. Some studies have concentrated on drivers as the main actor in most driving circumstances. The way a driver monitors the traffic environment partially indicates the level of driver awareness. As an objective, we carry out a quantitative and qualitative analysis of driver behavior to identify the relationship between a driver’s intention and his/her actions. The RoadLAB project developed an instrumented vehicle equipped with On-Board Diagnostic systems (OBD-II), a stereo imaging system, and a non-contact eye tracker system to record some synchronized driving data of the driver cephalo-ocular behavior, the vehicle itself, and traffic environment. We analyze several behavioral features of the drivers to realize the potential relevant relationship between driver behavior and the anticipation of the next driver maneuver as well as to reach a better understanding of driver behavior while in the act of driving. Moreover, we detect and classify road lanes in the urban and suburban areas as they provide contextual information. Our experimental results show that our proposed models reached the F1 score of 84% and the accuracy of 94% for driver maneuver prediction and lane type classification respectively

    Interactive Motion Planning for Multi-agent Systems with Physics-based and Behavior Constraints

    Get PDF
    Man-made entities and humans rely on movement as an essential form of interaction with the world. Whether it is an autonomous vehicle navigating crowded roadways or a simulated pedestrian traversing a virtual world, each entity must compute safe, effective paths to achieve their goals. In addition, these entities, termed agents, are subject to unique physical and behavioral limitations within their environment. For example, vehicles have a finite physical turning radius and must obey behavioral constraints such as traffic signals and rules of the road. Effective motion planning algorithms for diverse agents must account for these physics-based and behavior constraints. In this dissertation, we present novel motion planning algorithms that account for constraints which physically limit the agent and impose behavioral limitations on the virtual agents. We describe representational approaches to capture specific physical constraints on the various agents and propose abstractions to model behavior constraints affecting them. We then describe algorithms to plan motions for agents who are subject to the modeled constraints. First, we describe a biomechanically accurate elliptical representation for virtual pedestrians; we also describe human-like movement constraints corresponding to shoulder-turning and side-stepping in dense environments. We detail a novel motion planning algorithm extending velocity obstacles to generate collisionfree paths for hundreds of elliptical agents at interactive rates. Next, we describe an algorithm to encode dynamics and traffic-like behavior constraints for autonomous vehicles in urban and highway environments. We describe a motion planning algorithm to generate safe, high-speed avoidance maneuvers using a novel optimization function and modified control obstacle formulation, and we also present a simulation framework to evaluate driving strategies. Next, we present an approach to incorporate high-level reasoning to model the motions and behaviors of virtual agents in terms of verbal interactions with other agents or avatars. Our approach leverages natural-language interaction to reduce uncertainty and generate effective plans. Finally, we describe an application of our techniques to simulate pedestrian behaviors for gathering simulated data about loading, unloading, and evacuating an aircraft.Doctor of Philosoph

    Advances in Automated Driving Systems

    Get PDF
    Electrification, automation of vehicle control, digitalization and new mobility are the mega-trends in automotive engineering, and they are strongly connected. While many demonstrations for highly automated vehicles have been made worldwide, many challenges remain in bringing automated vehicles to the market for private and commercial use. The main challenges are as follows: reliable machine perception; accepted standards for vehicle-type approval and homologation; verification and validation of the functional safety, especially at SAE level 3+ systems; legal and ethical implications; acceptance of vehicle automation by occupants and society; interaction between automated and human-controlled vehicles in mixed traffic; human–machine interaction and usability; manipulation, misuse and cyber-security; the system costs of hard- and software and development efforts. This Special Issue was prepared in the years 2021 and 2022 and includes 15 papers with original research related to recent advances in the aforementioned challenges. The topics of this Special Issue cover: Machine perception for SAE L3+ driving automation; Trajectory planning and decision-making in complex traffic situations; X-by-Wire system components; Verification and validation of SAE L3+ systems; Misuse, manipulation and cybersecurity; Human–machine interactions, driver monitoring and driver-intention recognition; Road infrastructure measures for the introduction of SAE L3+ systems; Solutions for interactions between human- and machine-controlled vehicles in mixed traffic

    Driver Attention based on Deep Learning for a Smart Vehicle to Driver (V2D) Interaction

    Get PDF
    La atención del conductor es un tópico interesante dentro del mundo de los vehículos inteligentes para la consecución de tareas que van desde la monitorización del conductor hasta la conducción autónoma. Esta tesis aborda este tópico basándose en algoritmos de aprendizaje profundo para conseguir una interacción inteligente entre el vehículo y el conductor. La monitorización del conductor requiere una estimación precisa de su mirada en un entorno 3D para conocer el estado de su atención. En esta tesis se aborda este problema usando una única cámara, para que pueda ser utilizada en aplicaciones reales, sin un alto coste y sin molestar al conductor. La herramienta desarrollada ha sido evaluada en una base de datos pública (DADA2000), obteniendo unos resultados similares a los obtenidos mediante un seguidor de ojos caro que no puede ser usado en un vehículo real. Además, ha sido usada en una aplicación que evalúa la atención del conductor en la transición de modo autónomo a manual de forma simulada, proponiendo el uso de una métrica novedosa para conocer el estado de la situación del conductor en base a su atención sobre los diferentes objetos de la escena. Por otro lado, se ha propuesto un algoritmo de estimación de atención del conductor, utilizando las últimas técnicas de aprendizaje profundo como son las conditional Generative Adversarial Networks (cGANs) y el Multi-Head Self-Attention. Esto permite enfatizar ciertas zonas de la escena al igual que lo haría un humano. El modelo ha sido entrenado y validado en dos bases de datos públicas (BDD-A y DADA2000) superando a otras propuestas del estado del arte y consiguiendo unos tiempos de inferencia que permiten su uso en aplicaciones reales. Por último, se ha desarrollado un modelo que aprovecha nuestro algoritmo de atención del conductor para comprender una escena de tráfico obteniendo la decisión tomada por el vehículo y su explicación, en base a las imágenes tomadas por una cámara situada en la parte frontal del vehículo. Ha sido entrenado en una base de datos pública (BDD-OIA) proponiendo un modelo que entiende la secuencia temporal de los eventos usando un Transformer Encoder, consiguiendo superar a otras propuestas del estado del arte. Además de su validación en la base de datos, ha sido implementado en una aplicación que interacciona con el conductor aconsejando sobre las decisiones a tomar y sus explicaciones ante diferentes casos de uso en un entorno simulado. Esta tesis explora y demuestra los beneficios de la atención del conductor para el mundo de los vehículos inteligentes, logrando una interacción vehículo conductor a través de las últimas técnicas de aprendizaje profundo

    Methods and techniques for analyzing human factors facets on drivers

    Get PDF
    Mención Internacional en el título de doctorWith millions of cars moving daily, driving is the most performed activity worldwide. Unfortunately, according to the World Health Organization (WHO), every year, around 1.35 million people worldwide die from road traffic accidents and, in addition, between 20 and 50 million people are injured, placing road traffic accidents as the second leading cause of death among people between the ages of 5 and 29. According to WHO, human errors, such as speeding, driving under the influence of drugs, fatigue, or distractions at the wheel, are the underlying cause of most road accidents. Global reports on road safety such as "Road safety in the European Union. Trends, statistics, and main challenges" prepared by the European Commission in 2018 presented a statistical analysis that related road accident mortality rates and periods segmented by hours and days of the week. This report revealed that the highest incidence of mortality occurs regularly in the afternoons during working days, coinciding with the period when the volume of traffic increases and when any human error is much more likely to cause a traffic accident. Accordingly, mitigating human errors in driving is a challenge, and there is currently a growing trend in the proposal for technological solutions intended to integrate driver information into advanced driving systems to improve driver performance and ergonomics. The study of human factors in the field of driving is a multidisciplinary field in which several areas of knowledge converge, among which stand out psychology, physiology, instrumentation, signal treatment, machine learning, the integration of information and communication technologies (ICTs), and the design of human-machine communication interfaces. The main objective of this thesis is to exploit knowledge related to the different facets of human factors in the field of driving. Specific objectives include identifying tasks related to driving, the detection of unfavorable cognitive states in the driver, such as stress, and, transversely, the proposal for an architecture for the integration and coordination of driver monitoring systems with other active safety systems. It should be noted that the specific objectives address the critical aspects in each of the issues to be addressed. Identifying driving-related tasks is one of the primary aspects of the conceptual framework of driver modeling. Identifying maneuvers that a driver performs requires training beforehand a model with examples of each maneuver to be identified. To this end, a methodology was established to form a data set in which a relationship is established between the handling of the driving controls (steering wheel, pedals, gear lever, and turn indicators) and a series of adequately identified maneuvers. This methodology consisted of designing different driving scenarios in a realistic driving simulator for each type of maneuver, including stop, overtaking, turns, and specific maneuvers such as U-turn and three-point turn. From the perspective of detecting unfavorable cognitive states in the driver, stress can damage cognitive faculties, causing failures in the decision-making process. Physiological signals such as measurements derived from the heart rhythm or the change of electrical properties of the skin are reliable indicators when assessing whether a person is going through an episode of acute stress. However, the detection of stress patterns is still an open problem. Despite advances in sensor design for the non-invasive collection of physiological signals, certain factors prevent reaching models capable of detecting stress patterns in any subject. This thesis addresses two aspects of stress detection: the collection of physiological values during stress elicitation through laboratory techniques such as the Stroop effect and driving tests; and the detection of stress by designing a process flow based on unsupervised learning techniques, delving into the problems associated with the variability of intra- and inter-individual physiological measures that prevent the achievement of generalist models. Finally, in addition to developing models that address the different aspects of monitoring, the orchestration of monitoring systems and active safety systems is a transversal and essential aspect in improving safety, ergonomics, and driving experience. Both from the perspective of integration into test platforms and integration into final systems, the problem of deploying multiple active safety systems lies in the adoption of monolithic models where the system-specific functionality is run in isolation, without considering aspects such as cooperation and interoperability with other safety systems. This thesis addresses the problem of the development of more complex systems where monitoring systems condition the operability of multiple active safety systems. To this end, a mediation architecture is proposed to coordinate the reception and delivery of data flows generated by the various systems involved, including external sensors (lasers, external cameras), cabin sensors (cameras, smartwatches), detection models, deliberative models, delivery systems and machine-human communication interfaces. Ontology-based data modeling plays a crucial role in structuring all this information and consolidating the semantic representation of the driving scene, thus allowing the development of models based on data fusion.I would like to thank the Ministry of Economy and Competitiveness for granting me the predoctoral fellowship BES-2016-078143 corresponding to the project TRA2015-63708-R, which provided me the opportunity of conducting all my Ph. D activities, including completing an international internship.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: José María Armingol Moreno.- Secretario: Felipe Jiménez Alonso.- Vocal: Luis Mart

    Proceedings of the 2009 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    The joint workshop of the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, and the Vision and Fusion Laboratory (Institute for Anthropomatics, Karlsruhe Institute of Technology (KIT)), is organized annually since 2005 with the aim to report on the latest research and development findings of the doctoral students of both institutions. This book provides a collection of 16 technical reports on the research results presented on the 2009 workshop

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described
    corecore