4,095 research outputs found

    Multimodal Stereoscopic Movie Summarization Conforming to Narrative Characteristics

    Get PDF
    Video summarization is a timely and rapidly developing research field with broad commercial interest, due to the increasing availability of massive video data. Relevant algorithms face the challenge of needing to achieve a careful balance between summary compactness, enjoyability, and content coverage. The specific case of stereoscopic 3D theatrical films has become more important over the past years, but not received corresponding research attention. In this paper, a multi-stage, multimodal summarization process for such stereoscopic movies is proposed, that is able to extract a short, representative video skim conforming to narrative characteristics from a 3D film. At the initial stage, a novel, low-level video frame description method is introduced (frame moments descriptor) that compactly captures informative image statistics from luminance, color, optical flow, and stereoscopic disparity video data, both in a global and in a local scale. Thus, scene texture, illumination, motion, and geometry properties may succinctly be contained within a single frame feature descriptor, which can subsequently be employed as a building block in any key-frame extraction scheme, e.g., for intra-shot frame clustering. The computed key-frames are then used to construct a movie summary in the form of a video skim, which is post-processed in a manner that also considers the audio modality. The next stage of the proposed summarization pipeline essentially performs shot pruning, controlled by a user-provided shot retention parameter, that removes segments from the skim based on the narrative prominence of movie characters in both the visual and the audio modalities. This novel process (multimodal shot pruning) is algebraically modeled as a multimodal matrix column subset selection problem, which is solved using an evolutionary computing approach. Subsequently, disorienting editing effects induced by summarization are dealt with, through manipulation of the video skim. At the last step, the skim is suitably post-processed in order to reduce stereoscopic video defects that may cause visual fatigue

    RPCA-KFE: Key Frame Extraction for Consumer Video based Robust Principal Component Analysis

    Full text link
    Key frame extraction algorithms consider the problem of selecting a subset of the most informative frames from a video to summarize its content.Comment: This paper has been withdrawn by the author due to a crucial sign error in equation

    VSCAN: An Enhanced Video Summarization using Density-based Spatial Clustering

    Full text link
    In this paper, we present VSCAN, a novel approach for generating static video summaries. This approach is based on a modified DBSCAN clustering algorithm to summarize the video content utilizing both color and texture features of the video frames. The paper also introduces an enhanced evaluation method that depends on color and texture features. Video Summaries generated by VSCAN are compared with summaries generated by other approaches found in the literature and those created by users. Experimental results indicate that the video summaries generated by VSCAN have a higher quality than those generated by other approaches.Comment: arXiv admin note: substantial text overlap with arXiv:1401.3590 by other authors without attributio

    Video summarization by group scoring

    Get PDF
    In this paper a new model for user-centered video summarization is presented. Involvement of more than one expert in generating the final video summary should be regarded as the main use case for this algorithm. This approach consists of three major steps. First, the video frames are scored by a group of operators. Next, these assigned scores are averaged to produce a singular value for each frame and lastly, the highest scored video frames alongside the corresponding audio and textual contents are extracted to be inserted into the summary. The effectiveness of this approach has been evaluated by comparing the video summaries generated by this system against the results from a number of automatic summarization tools that use different modalities for abstraction

    Activity-driven content adaptation for effective video summarisation

    Get PDF
    In this paper, we present a novel method for content adaptation and video summarization fully implemented in compressed-domain. Firstly, summarization of generic videos is modeled as the process of extracted human objects under various activities/events. Accordingly, frames are classified into five categories via fuzzy decision including shot changes (cut and gradual transitions), motion activities (camera motion and object motion) and others by using two inter-frame measurements. Secondly, human objects are detected using Haar-like features. With the detected human objects and attained frame categories, activity levels for each frame are determined to adapt with video contents. Continuous frames belonging to same category are grouped to form one activity entry as content of interest (COI) which will convert the original video into a series of activities. An overall adjustable quota is used to control the size of generated summarization for efficient streaming purpose. Upon this quota, the frames selected for summarization are determined by evenly sampling the accumulated activity levels for content adaptation. Quantitative evaluations have proved the effectiveness and efficiency of our proposed approach, which provides a more flexible and general solution for this topic as domain-specific tasks such as accurate recognition of objects can be avoided
    • …
    corecore