236 research outputs found

    Spooky effect in optimal OSPA estimation and how GOSPA solves it

    Get PDF
    In this paper, we show the spooky effect at a distance that arises in optimal estimation of multiple targets with the optimal sub-pattern assignment (OSPA) metric. This effect refers to the fact that if we have several independent potential targets at distant locations, a change in the probability of existence of one of them can completely change the optimal estimation of the rest of the potential targets. As opposed to OSPA, the generalised OSPA (GOSPA) metric (α=2) penalises localisation errors for properly detected targets, false targets and missed targets. As a consequence, optimal GOSPA estimation aims to lower the number of false and missed targets, as well as the localisation error for properly detected targets, and avoids the spooky effect

    A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget Tracking

    Get PDF
    [EN]We review some advances of the particle filtering (PF) algorithm that have been achieved in the last decade in the context of target tracking, with regard to either a single target or multiple targets in the presence of false or missing data. The first part of our review is on remarkable achievements that have been made for the single-target PF from several aspects including importance proposal, computing efficiency, particle degeneracy/impoverishment and constrained/multi-modal systems. The second part of our review is on analyzing the intractable challenges raised within the general multitarget (multi-sensor) tracking due to random target birth and termination, false alarm, misdetection, measurement-to-track (M2T) uncertainty and track uncertainty. The mainstream multitarget PF approaches consist of two main classes, one based on M2T association approaches and the other not such as the finite set statistics-based PF. In either case, significant challenges remain due to unknown tracking scenarios and integrated tracking management

    Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA and association-based MeMBer

    Full text link
    Recent developments in random finite sets (RFSs) have yielded a variety of tracking methods that avoid data association. This paper derives a form of the full Bayes RFS filter and observes that data association is implicitly present, in a data structure similar to MHT. Subsequently, algorithms are obtained by approximating the distribution of associations. Two algorithms result: one nearly identical to JIPDA, and another related to the MeMBer filter. Both improve performance in challenging environments.Comment: Journal version at http://ieeexplore.ieee.org/document/7272821. Matlab code of simple implementation included with ancillary file

    Joint probabilistic data association filter with unknown detection probability and clutter rate

    Get PDF
    This paper proposes a novel joint probabilistic data association (JPDA) filter for joint target tracking and track maintenance under unknown detection probability and clutter rate. The proposed algorithm consists of two main parts: (1) the standard JPDA filter with a Poisson point process birth model for multi-object state estimation; and (2) a multi-Bernoulli filter for detection probability and clutter rate estimation. The performance of the proposed JPDA filter is evaluated through empirical tests. The results of the empirical tests show that the proposed JPDA filter has comparable performance with ideal JPDA that is assumed to have perfect knowledge of detection probability and clutter rate. Therefore, the algorithm developed is practical and could be implemented in a wide range of application

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    A Multi-Scan Labeled Random Finite Set Model for Multi-object State Estimation

    Full text link
    State space models in which the system state is a finite set--called the multi-object state--have generated considerable interest in recent years. Smoothing for state space models provides better estimation performance than filtering by using the full posterior rather than the filtering density. In multi-object state estimation, the Bayes multi-object filtering recursion admits an analytic solution known as the Generalized Labeled Multi-Bernoulli (GLMB) filter. In this work, we extend the analytic GLMB recursion to propagate the multi-object posterior. We also propose an implementation of this so-called multi-scan GLMB posterior recursion using a similar approach to the GLMB filter implementation
    • …
    corecore