154 research outputs found

    The Power of Triply Complementary Priors for Image Compressive Sensing

    Full text link
    Recent works that utilized deep models have achieved superior results in various image restoration applications. Such approach is typically supervised which requires a corpus of training images with distribution similar to the images to be recovered. On the other hand, the shallow methods which are usually unsupervised remain promising performance in many inverse problems, \eg, image compressive sensing (CS), as they can effectively leverage non-local self-similarity priors of natural images. However, most of such methods are patch-based leading to the restored images with various ringing artifacts due to naive patch aggregation. Using either approach alone usually limits performance and generalizability in image restoration tasks. In this paper, we propose a joint low-rank and deep (LRD) image model, which contains a pair of triply complementary priors, namely \textit{external} and \textit{internal}, \textit{deep} and \textit{shallow}, and \textit{local} and \textit{non-local} priors. We then propose a novel hybrid plug-and-play (H-PnP) framework based on the LRD model for image CS. To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-PnP based image CS problem. Extensive experimental results demonstrate that the proposed H-PnP algorithm significantly outperforms the state-of-the-art techniques for image CS recovery such as SCSNet and WNNM

    Pixel Adaptive Deep Unfolding Transformer for Hyperspectral Image Reconstruction

    Full text link
    Hyperspectral Image (HSI) reconstruction has made gratifying progress with the deep unfolding framework by formulating the problem into a data module and a prior module. Nevertheless, existing methods still face the problem of insufficient matching with HSI data. The issues lie in three aspects: 1) fixed gradient descent step in the data module while the degradation of HSI is agnostic in the pixel-level. 2) inadequate prior module for 3D HSI cube. 3) stage interaction ignoring the differences in features at different stages. To address these issues, in this work, we propose a Pixel Adaptive Deep Unfolding Transformer (PADUT) for HSI reconstruction. In the data module, a pixel adaptive descent step is employed to focus on pixel-level agnostic degradation. In the prior module, we introduce the Non-local Spectral Transformer (NST) to emphasize the 3D characteristics of HSI for recovering. Moreover, inspired by the diverse expression of features in different stages and depths, the stage interaction is improved by the Fast Fourier Transform (FFT). Experimental results on both simulated and real scenes exhibit the superior performance of our method compared to state-of-the-art HSI reconstruction methods. The code is released at: https://github.com/MyuLi/PADUT.Comment: ICCV 202

    Linear Inverse Problems and Neural Networks

    Get PDF
    We investigate two ideas in this thesis. First, we analyze the results of adaptingrecovery algorithms from linear inverse problems to defend neural networks against adversarial attacks. Second, we analyze the results of substituting sparsity priors with neural network priors in linear inverse problems. For the former, we are able to extend the framework introduced in [1] to defend neural networks against ℓ0, ℓ2,and ℓ∞ norm attacks, and for the latter, we find that our method yields an improvement over reconstruction results of [2]
    • …
    corecore