5,665 research outputs found

    Intelligent alarm system for hospitals using smartphone technology

    Get PDF
    During the last decade, attention was paid to detect the accident and call the ambulance as soon as possible, the situation was neglected after the arrival of the patient to the specified service point. This negligence led to an increase in the mortality rate, especially where the highest percentage of deaths occurred during the first hour after the accident. This highest Mortality can be avoided by providing proper health care after the arrival of the patient to the hospital, the proposed system reduces the rescue time after the arrival of a patient to the hospital, and it requires each hospital to be endowed with a reception model responsible for detecting and reporting accident situations to the emergency service. It was be found that there is an urgent need for a web-based hospital management system with a mobile web service to respond immediately to incidents in the event of an accident. This system utilizes the Android phone application to connect to the server for transferring the specified data to the hospital and it can be used for comprehensive accident analysis and management. In this paper, a combination of Android phone application, database, and visual studio 2012 was used to develop the system

    Sensor Technologies for Intelligent Transportation Systems

    Get PDF
    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment

    RescueAlert-an accident detection and rescue mechanism

    Get PDF
    With the increase of vehicles and cars of different kind and the large movement that occurs every day on the roads it was natural to observe an increase in traffic accidents, but the real dilemma lies in how to make the rescue process efficient. The problem that we want to solve is the response of ambulances towards accidents and the lengthy registration process of patients in hospitals. In the above two scenarios, the manual process of calling the ambulance leads to delay in rescue of patients from an accident and the delay in registration of patient leads to delay in medication or treatment of the patient. We want to make the process more efficient by automating accident detection for increasing the efficiency of the ambulance rescue process and by sending the details of the patient before the patient reaches the hospitals for faster treatment of patients. Along with this, alert messages will be sent to the family or friends of the patients to notify them as soon as an accident is detected

    A Recent Connected Vehicle - IoT Automotive Application Based on Communication Technology

    Get PDF
    Realizing the full potential of vehicle communications depends in large part on the infrastructure of vehicular networks. As more cars are connected to the Internet and one another, new technological advancements are being driven by a multidisciplinary approach. As transportation networks become more complicated, academic, and automotive researchers collaborate to offer their thoughts and answers. They also imagine various applications to enhance mobility and the driving experience. Due to the requirement for low latency, faster throughput, and increased reliability, wireless access technologies and an appropriate (potentially dedicated) infrastructure present substantial hurdles to communication systems. This article provides a comprehensive overview of the wireless access technologies, deployment, and connected car infrastructures that enable vehicular connectivity. The challenges, issues, services, and maintenance of connected vehicles that rely on infrastructure-based vehicular communications are also identified in this paper

    Proposing an International Standard Accident Number for Interconnecting Information and Communication Technology Systems of the Rescue Chain

    Get PDF
    Background  The rapid dissemination of smart devices within the internet of things (IoT) is developing toward automatic emergency alerts which are transmitted from machine to machine without human interaction. However, apart from individual projects concentrating on single types of accidents, there is no general methodology of connecting the standalone information and communication technology (ICT) systems involved in an accident: systems for alerting (e.g., smart home/car/wearable), systems in the responding stage (e.g., ambulance), and in the curing stage (e.g., hospital). Objectives  We define the International Standard Accident Number (ISAN) as a unique token for interconnecting these ICT systems and to provide embedded data describing the circumstances of an accident (time, position, and identifier of the alerting system). Materials and methods  Based on the characteristics of processes and ICT systems in emergency care, we derive technological, syntactic, and semantic requirements for the ISAN, and we analyze existing standards to be incorporated in the ISAN specification. Results  We choose a set of formats for describing the embedded data and give rules for their combination to generate an ISAN. It is a compact alphanumeric representation that is generated easily by the alerting system. We demonstrate generation, conversion, analysis, and visualization via representational state transfer (REST) services. Although ISAN targets machine-to-machine communication, we give examples of graphical user interfaces. Conclusion  Created either locally by the alerting IoT system or remotely using our RESTful service, the ISAN is a simple and flexible token that enables technological, syntactic, and semantic interoperability between all ICT systems in emergency care

    Providing Real-time Driver Advisories in Connected Vehicles: A Data-Driven Approach Supported by Field Experimentation

    Get PDF
    Approximately 94\% of the annual transportation crashes in the U.S. involve driver errors and violations contributing to the $1 Trillion losses in the economy. Recent V2X communication technologies enabled by Dedicated Short Range Communication (DSRC) and Cellular-V2X (C-V2X) can provide cost-effective solutions for many of these transportation safety applications and help reduce crashes up to 85%. This research aims towards two primary goals. First, understanding the feasibility of deploying V2V-based safety critical applications under the constraints of limited communication ranges and adverse roadway conditions. Second, to develop a prototype application for providing real-time advisories for hazardous driving behaviors and to notify neighboring vehicles using available wireless communication platform. Towards accomplishing the first goal, we have developed a mathematical model to quantify V2V communication parameters and constraints pertaining to a DSRC-based “Safe pass advisory” application and validated the theoretical model using field experiments by measuring the communication ranges between two oncoming vehicles. We also investigated the impacts of varying altitudes, vehicle-interior obstacles, and OBU placement on V2V communication reliability and its implications. Along the direction of the second goal, we derived a data-driven model to characterize the acceleration/deceleration profile of a regular passenger vehicle with respect to speed and throttle position. As a proof of concept demonstration, we implemented an IoT-based communication architecture for disseminating the hazardous driving alerts to vulnerable drivers through cellular and/or V2X communication infrastructure

    A review of the internet of floods : near real-time detection of a flood event and its impact

    Get PDF
    Worldwide, flood events frequently have a dramatic impact on urban societies. Time is key during a flood event in order to evacuate vulnerable people at risk, minimize the socio-economic, ecologic and cultural impact of the event and restore a society from this hazard as quickly as possible. Therefore, detecting a flood in near real-time and assessing the risks relating to these flood events on the fly is of great importance. Therefore, there is a need to search for the optimal way to collect data in order to detect floods in real time. Internet of Things (IoT) is the ideal method to bring together data of sensing equipment or identifying tools with networking and processing capabilities, allow them to communicate with one another and with other devices and services over the Internet to accomplish the detection of floods in near real-time. The main objective of this paper is to report on the current state of research on the IoT in the domain of flood detection. Current trends in IoT are identified, and academic literature is examined. The integration of IoT would greatly enhance disaster management and, therefore, will be of greater importance into the future

    IoT-Enabled Smart Cities: A Review of Concepts, Frameworks and Key Technologies

    Get PDF
    In recent years, smart cities have been significantly developed and have greatly expanded their potential. In fact, novel advancements to the Internet of things (IoT) have paved the way for new possibilities, representing a set of key enabling technologies for smart cities and allowing the production and automation of innovative services and advanced applications for the different city stakeholders. This paper presents a review of the research literature on IoT-enabled smart cities, with the aim of highlighting the main trends and open challenges of adopting IoT technologies for the development of sustainable and efficient smart cities. This work first provides a survey on the key technologies proposed in the literature for the implementation of IoT frameworks, and then a review of the main smart city approaches and frameworks, based on classification into eight domains, which extends the traditional six domain classification that is typically adopted in most of the related works
    • 

    corecore