1,369 research outputs found

    Wireless information and power transfer: from scientific hypothesis to engineering practice

    No full text
    Recently, there has been substantial research interest in the subject of Simultaneous Wireless Information andPower Transfer (SWIPT) owing to its cross-disciplinary appeal and its wide-ranging application potential, whichmotivates this overview. More explicitly, we provide a brief survey of the state-of-the-art and introduce severalpractical transceiver architectures that may facilitate its implementation. Moreover, the most important link-levelas well as system-level design aspects are elaborated on, along with a variety of potential solutions and researchideas. We envision that the dual interpretation of Radio Frequency (RF) signals creates new opportunities as wellas challenges requiring substantial research, innovation and engineering efforts

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Adaptive Energy-Efficient Power Allocation in Green Interference Alignment Based Wireless Networks

    Get PDF
    Interference alignment (IA) is a promising technique for interference management in wireless networks. However, the sum rate may fall short of the theoretical maximum especially at low signal-to-noise ratio (SNR) levels since IA mainly concentrates on mitigating the interference, instead of improving the quality of desired signal. Moreover, most of the previous works focused on improving spectrum efficiency, but the energy efficiency aspect is largely ignored. In this paper, an adaptive energy-efficient IA algorithm is proposed through power allocation and transmission-mode adaptation for green IAbased wireless networks. The power allocation problem for IA is first analyzed, then we propose a power allocation scheme that optimizes the energy efficiency of IA-based wireless networks. When SNR is low, the transmitted power of some users may become zero. Thus the users with low transmitted power are turned into the sleep mode in our scheme to save energy. The transmitted power and transmission mode of the remaining active users are adapted again to further improve the energy efficiency of the network. To guarantee the interests of all the users, fairness among users is also considered in the proposed scheme. Simulation results are presented to show the effectiveness of the proposed algorithm in improving the energy efficiency of IAbased wireless networks
    corecore