2,377 research outputs found

    Continuous-time analog circuits for statistical signal processing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2003.Vita.Includes bibliographical references (p. 205-209).This thesis proposes an alternate paradigm for designing computers using continuous-time analog circuits. Digital computation sacrifices continuous degrees of freedom. A principled approach to recovering them is to view analog circuits as propagating probabilities in a message passing algorithm. Within this framework, analog continuous-time circuits can perform robust, programmable, high-speed, low-power, cost-effective, statistical signal processing. This methodology will have broad application to systems which can benefit from low-power, high-speed signal processing and offers the possibility of adaptable/programmable high-speed circuitry at frequencies where digital circuitry would be cost and power prohibitive. Many problems must be solved before the new design methodology can be shown to be useful in practice: Continuous-time signal processing is not well understood. Analog computational circuits known as "soft-gates" have been previously proposed, but a complementary set of analog memory circuits is still lacking. Analog circuits are usually tunable, rarely reconfigurable, but never programmable. The thesis develops an understanding of the convergence and synchronization of statistical signal processing algorithms in continuous time, and explores the use of linear and nonlinear circuits for analog memory. An exemplary embodiment called the Noise Lock Loop (NLL) using these design primitives is demonstrated to perform direct-sequence spread-spectrum acquisition and tracking functionality and promises order-of-magnitude wins over digital implementations. A building block for the construction of programmable analog gate arrays, the "soft-multiplexer" is also proposed.by Benjamin Vigoda.Ph.D

    Real-Time Localization Using Software Defined Radio

    Get PDF
    Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system

    Soft Error Analysis and Mitigation at High Abstraction Levels

    Get PDF
    Radiation-induced soft errors, as one of the major reliability challenges in future technology nodes, have to be carefully taken into consideration in the design space exploration. This thesis presents several novel and efficient techniques for soft error evaluation and mitigation at high abstract levels, i.e. from register transfer level up to behavioral algorithmic level. The effectiveness of proposed techniques is demonstrated with extensive synthesis experiments

    Calcul sur architecture non fiable

    Get PDF
    Although materials could be fabricated as error-free theoretically with a huge cost for worst-case design methodologies, the circuit is still susceptible to transient faults by the effects of radiation, temperature sensitivity, and etc. On the contrary, an error-resilient design enables the manufacturing process to be relieved from the variability issue so as to save material cost. Since variability and transient upsets are worsening as emerging fabrication process and size shrink are tending intense, the requirement of robust design is imminent. This thesis addresses the issue of designing on unreliable circuit. The main contributions are fourfold. Firstly a fast error-correction and low cost redundancy fault-tolerant method is presented. Moreover, we introduce judicious two-dimensional criteria to estimate the reliability and the hardware efïŹciency of a circuit. A general-purpose model offers low-redundancy error-resilience for contemporary logic systems as well as future nanoeletronic architectures. At last, a decoder against internal transient faults is designed in this work.En thĂ©orie, les circuits Ă©lectroniques conçus selon la mĂ©thode du pire-cas sont supposĂ©s garantir un fonctionnement sans erreur pourun coĂ»t d’implĂ©mentation Ă©levĂ©. Dans la pratique les circuits restent sujets aux erreurs transitoires du fait de leur sensibilitĂ© aux alĂ©astels que la radiation et la tempĂ©rature. En revanche, une conception prenant en compte la tolĂ©rance aux fautes permet de faire face Ă  detels alĂ©as comme la variabilitĂ© du processus de fabrication. De plus, les erreurs transitoires et la variabilitĂ© de fabrication s’intensiïŹentavec l’émergence de nouveaux processus de fabrication et des circuits de dimension de plus en plus rĂ©duite. La demande d’une conceptionintĂ©grant la tolĂ©rance aux fautes devient dĂ©sormais primordiale. La prĂ©sente thĂšse a pour objectif de cerner la problĂ©matique de laconception de circuits sur des puces peu ïŹables et apporte des contributions suivant quatre aspects. Dans un premier temps, nous proposonsune mĂ©thode de tolĂ©rance aux fautes, basĂ©e sur la correction d’erreurs et la redondance Ă  faible coĂ»t. Puis, nous prĂ©sentonsun critĂšre bidimensionnel judicieux permettant d’évaluer la ïŹabilitĂ© et l’efïŹcacitĂ© matĂ©rielle de circuits. Nous proposons ensuite un modĂšleuniversel qui apporte une tolĂ©rance avec fautes Ă  redondance faible pour les systĂšmes logiques d’aujourd’hui et les architecturesnanoĂ©lectroniques de demain. EnïŹn, nous dĂ©couvrons un dĂ©codeur tolĂ©rant aux fautes transitoires internes
    • 

    corecore