6,426 research outputs found

    On the Integration of Adaptive and Interactive Robotic Smart Spaces

    Get PDF
    © 2015 Mauro Dragone et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)Enabling robots to seamlessly operate as part of smart spaces is an important and extended challenge for robotics R&D and a key enabler for a range of advanced robotic applications, such as AmbientAssisted Living (AAL) and home automation. The integration of these technologies is currently being pursued from two largely distinct view-points: On the one hand, people-centred initiatives focus on improving the user’s acceptance by tackling human-robot interaction (HRI) issues, often adopting a social robotic approach, and by giving to the designer and - in a limited degree – to the final user(s), control on personalization and product customisation features. On the other hand, technologically-driven initiatives are building impersonal but intelligent systems that are able to pro-actively and autonomously adapt their operations to fit changing requirements and evolving users’ needs,but which largely ignore and do not leverage human-robot interaction and may thus lead to poor user experience and user acceptance. In order to inform the development of a new generation of smart robotic spaces, this paper analyses and compares different research strands with a view to proposing possible integrated solutions with both advanced HRI and online adaptation capabilities.Peer reviewe

    Proxemic interactions with multi-artifact systems

    Get PDF
    Abstract — The artifact ecologies emerging from an increasing number of interactive digital artifacts, capable of communicating with each other wirelessly, have created an interaction space where software applications are no longer limited by the physical boundaries of a single device. With the new opportunities follows an added complexity that interaction designers need to address. Previous work have shown the potential of proxemic interactions as one way of dealing with design challenges of ubicomp systems. However, the work focused on interactions involving multiple digital artifacts is limited. In this paper, we analyze two multi-artifact systems from our prior work within the domain of music consumption and identify four concepts of multi-artifact interactions: Plasticity, migration, complementarity, and multi-user. These concepts forms the basis for a discussion on the potential use of proxemic interactions in the design of multi-artifact systems. Keywords- artifact ecology, multi-artifact systems, proxemic interactions, music systems. I

    SenseBelt:a belt-worn sensor to support cross-device interaction

    Get PDF
    Mobile interaction is shifting from a single device to simultaneous interaction with ensembles of devices such as phones, tablets, or watches. Spatially-aware cross-device interaction between mobile devices typically requires a fixed tracking infrastructure, which lim- its mobility. In this paper, we present SenseBelt – a sensing belt that enhances existing mobile interactions and enables low-cost, ad hoc sensing of cross-device gestures and interactions. SenseBelt enables proxemic interactions between people and their personal devices. SenseBelt also supports cross-device interaction be- tween personal devices and stationary devices, such as public displays. We discuss the design and implementation of SenseBelt together with possible applications. With an initial evaluation, we provide insights into the benefits and drawbacks of a belt-worn mediating sensor to support cross-device interactions

    EagleSense:tracking people and devices in interactive spaces using real-time top-view depth-sensing

    Get PDF
    Real-time tracking of people's location, orientation and activities is increasingly important for designing novel ubiquitous computing applications. Top-view camera-based tracking avoids occlusion when tracking people while collaborating, but often requires complex tracking systems and advanced computer vision algorithms. To facilitate the prototyping of ubiquitous computing applications for interactive spaces, we developed EagleSense, a real-time human posture and activity recognition system with a single top-view depth sensing camera. We contribute our novel algorithm and processing pipeline, including details for calculating silhouetteextremities features and applying gradient tree boosting classifiers for activity recognition optimised for top-view depth sensing. EagleSense provides easy access to the real-time tracking data and includes tools for facilitating the integration into custom applications. We report the results of a technical evaluation with 12 participants and demonstrate the capabilities of EagleSense with application case studies

    Activity-Centric Computing Systems

    Get PDF
    • Activity-Centric Computing (ACC) addresses deep-rooted information management problems in traditional application centric computing by providing a unifying computational model for human goal-oriented ‘activity,’ cutting across system boundaries. • We provide a historical review of the motivation for and development of ACC systems, and highlight the need for broadening up this research topic to also include low-level system research and development. • ACC concepts and technology relate to many facets of computing; they are relevant for researchers working on new computing models and operating systems, as well as for application designers seeking to incorporate these technologies in domain-specific applications

    Interaction in Digital Ecologies with Connected and Non-Connected Cars

    Get PDF

    Morphological Divergence and Flow-Induced Phenotypic Plasticity in a Native Fish from Anthropogenically Altered Stream Habitats

    Get PDF
    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change
    corecore