109,723 research outputs found

    Minimum Length Scheduling for Discrete-Rate Full-Duplex Wireless Powered Communication Networks

    Full text link
    In this paper, we consider a wireless powered communication network where multiple users with RF energy harvesting capabilities communicate to a hybrid energy and information access point (HAP) in full-duplex mode. Each user has to transmit a certain amount of data with a transmission rate from a finite set of discrete rate levels, using the energy initially available in its battery and the energy it can harvest until the end of its transmission. Considering this model, we propose a novel discrete rate based minimum length scheduling problem to determine the optimal power control, rate adaptation and transmission schedule subject to data, energy causality and maximum transmit power constraints. The proposed optimization problem is proven to be NP-hard which requires exponential-time algorithms to solve for the global optimum. As a solution strategy, first, we demonstrate that the power control and rate adaptation, and scheduling problems can be solved separately in the optimal solution. For the power control and rate adaptation problem, we derive the optimal solution based on the proposed minimum length scheduling slot definition. For the scheduling, we classify the problem based on the distribution of minimum length scheduling slots of the users over time. For the non-overlapping slots scenario, we present the optimal scheduling algorithm. For the overlapping scenario, we propose a polynomial-time heuristic scheduling algorithm

    Joint Base Station Clustering and Beamformer Design for Partial Coordinated Transmission in Heterogenous Networks

    Full text link
    We consider the interference management problem in a multicell MIMO heterogenous network. Within each cell there are a large number of distributed micro/pico base stations (BSs) that can be potentially coordinated for joint transmission. To reduce coordination overhead, we consider user-centric BS clustering so that each user is served by only a small number of (potentially overlapping) BSs. Thus, given the channel state information, our objective is to jointly design the BS clustering and the linear beamformers for all BSs in the network. In this paper, we formulate this problem from a {sparse optimization} perspective, and propose an efficient algorithm that is based on iteratively solving a sequence of group LASSO problems. A novel feature of the proposed algorithm is that it performs BS clustering and beamformer design jointly rather than separately as is done in the existing approaches for partial coordinated transmission. Moreover, the cluster size can be controlled by adjusting a single penalty parameter in the nonsmooth regularized utility function. The convergence of the proposed algorithm (to a local optimal solution) is guaranteed, and its effectiveness is demonstrated via extensive simulation.Comment: Accepted by IEEE Journal on Selected Areas in Communications, special issues on Large-Scale multiple-antenna system

    Symbiotic Radio: A New Communication Paradigm for Passive Internet-of-Things

    Full text link
    In this paper, a novel technique, called symbiotic radio (SR), is proposed for passive Internet-of-Things (IoT), in which a backscatter device (BD) is integrated with a primary transmission. The primary transmitter is designed to assist the primary and BD transmissions, and the primary receiver decodes the information from the primary transmitter as well as the BD. We consider a multiple-input single-output (MISO) SR and the symbol period for BD transmission is designed to be either the same as or much longer than that of the primary system, resulting in parasitic or commensal relationship between the primary and BD transmissions. We first derive the achievable rates for the primary system and the BD transmission. Then, we formulate two transmit beamforming optimization problems, i.e., the weighted sum-rate maximization problem and the transmit power minimization problem, and solve these non-convex problems by applying semi-definite relaxation technique. In addition, a novel transmit beamforming structure is proposed to reduce the computational complexity of the solutions. Simulation results show that when the BD transmission rate is properly designed, the proposed SR not only enables the opportunistic transmission for the BD via energy-efficient passive backscattering, but also enhances the achievable rate of the primary system by properly exploiting the additional signal path from the BD

    Spectrum optimization in multi-user multi-carrier systems with iterative convex and nonconvex approximation methods

    Full text link
    Several practical multi-user multi-carrier communication systems are characterized by a multi-carrier interference channel system model where the interference is treated as noise. For these systems, spectrum optimization is a promising means to mitigate interference. This however corresponds to a challenging nonconvex optimization problem. Existing iterative convex approximation (ICA) methods consist in solving a series of improving convex approximations and are typically implemented in a per-user iterative approach. However they do not take this typical iterative implementation into account in their design. This paper proposes a novel class of iterative approximation methods that focuses explicitly on the per-user iterative implementation, which allows to relax the problem significantly, dropping joint convexity and even convexity requirements for the approximations. A systematic design framework is proposed to construct instances of this novel class, where several new iterative approximation methods are developed with improved per-user convex and nonconvex approximations that are both tighter and simpler to solve (in closed-form). As a result, these novel methods display a much faster convergence speed and require a significantly lower computational cost. Furthermore, a majority of the proposed methods can tackle the issue of getting stuck in bad locally optimal solutions, and hence improve solution quality compared to existing ICA methods.Comment: 33 pages, 7 figures. This work has been submitted for possible publicatio

    Quality of Information Maximization for Wireless Networks via a Fully Separable Quadratic Policy

    Full text link
    An information collection problem in a wireless network with random events is considered. Wireless devices report on each event using one of multiple reporting formats. Each format has a different quality and uses different data lengths. Delivering all data in the highest quality format can overload system resources. The goal is to make intelligent format selection and routing decisions to maximize time-averaged information quality subject to network stability. Lyapunov optimization theory can be used to solve such a problem by repeatedly minimizing the linear terms of a quadratic drift-plus-penalty expression. To reduce delays, this paper proposes a novel extension of this technique that preserves the quadratic nature of the drift minimization while maintaining a fully separable structure. In addition, to avoid high queuing delay, paths are restricted to at most two hops. The resulting algorithm can push average information quality arbitrarily close to optimum, with a trade-off in queue backlog. The algorithm compares favorably to the basic drift-plus-penalty scheme in terms of backlog and delay. Furthermore, the technique is generalized to solve linear programs and yields smoother results than the standard drift-plus-penalty scheme

    Delivery Time Reduction for Order-Constrained Applications using Binary Network Codes

    Full text link
    Consider a radio access network wherein a base-station is required to deliver a set of order-constrained messages to a set of users over independent erasure channels. This paper studies the delivery time reduction problem using instantly decodable network coding (IDNC). Motivated by time-critical and order-constrained applications, the delivery time is defined, at each transmission, as the number of undelivered messages. The delivery time minimization problem being computationally intractable, most of the existing literature on IDNC propose sub-optimal online solutions. This paper suggests a novel method for solving the problem by introducing the delivery delay as a measure of distance to optimality. An expression characterizing the delivery time using the delivery delay is derived, allowing the approximation of the delivery time minimization problem by an optimization problem involving the delivery delay. The problem is, then, formulated as a maximum weight clique selection problem over the IDNC graph wherein the weight of each vertex reflects its corresponding user and message's delay. Simulation results suggest that the proposed solution achieves lower delivery and completion times as compared to the best-known heuristics for delivery time reduction

    Coding based Data Broadcasting for Time Critical Applications with Rate Adaptation

    Full text link
    In this paper, we dynamically select the transmission rate and design wireless network coding to improve the quality of services such as delay for time critical applications. In a network coded system, with low transmission rate and hence longer transmission range, more packets may be encoded, which increases the coding opportunity. However, low transmission rate may incur extra transmission delay, which is intolerable for time critical applications. We design a novel joint rate selection and wireless network coding (RSNC) scheme with delay constraint, so as to maximize the total benefit (where we can define the benefit based on the priority or importance of a packet for example) of the packets that are successfully received at the destinations without missing their deadlines. We prove that the proposed problem is NP-hard, and propose a novel graph model to mathematically formulate the problem. For the general case, we propose a transmission metric and design an efficient algorithm to determine the transmission rate and coding strategy for each transmission. For a special case when all delay constraints are the same, we study the pairwise coding and present a polynomial time pairwise coding algorithm that achieves an approximation ratio of 1 - 1/e to the optimal pairwise coding solution, where e is the base of the natural logarithm. Finally, simulation results demonstrate the superiority of the proposed RSNC scheme.Comment: IEEE Transactions on Vehicular Technolog

    Delay-aware data transmission of multi-carrier communications in the presence of renewable energy

    Full text link
    In the paper, we investigate the delay-aware data transmission in renewable energy aided multi-carrier system. Besides utilizing the local renewables, the transmitter can also purchase grid power. By scheduling the amount of transmitted data (The data are stored in a buffer before transmission), the sub-carrier allocation, and the renewable allocation in each transmission period, the transmitter aims to minimize the purchasing cost under a buffer delay constraint. By theoretical analysis of the formulated stochastic optimization problem, we find that transmit the scheduled data through the subcarrier with best condition is optimal and greedy renewable energy is approximately optimal. Furthermore, based on the theoretical derives and Lyapunov optimization, an on-line algorithm, which does NOT require future information, is proposed. Numerical results illustrate the delay and cost performance of the proposed algorithm. In addition, the comparisons with the delay-optimal policy and cost-optimal policy are carried out

    On the Packet Decoding Delay of Linear Network Coded Wireless Broadcast

    Full text link
    We apply linear network coding (LNC) to broadcast a block of data packets from one sender to a set of receivers via lossy wireless channels, assuming each receiver already possesses a subset of these packets and wants the rest. We aim to characterize the average packet decoding delay (APDD), which reflects how soon each individual data packet can be decoded by each receiver on average, and to minimize it while achieving optimal throughput. To this end, we first derive closed-form lower bounds on the expected APDD of all LNC techniques under random packet erasures. We then prove that these bounds are NP-hard to achieve and, thus, that APDD minimization is an NP-hard problem. We then study the performance of some existing LNC techniques, including random linear network coding (RLNC) and instantly decodable network coding (IDNC). We proved that all throughput-optimal LNC techniques can approximate the minimum expected APDD with a ratio between 4/3 and 2. In particular, the ratio of RLNC is exactly 2. We then prove that all IDNC techniques are only heuristics in terms of throughput optimization and {cannot guarantee an APDD approximation ratio for at least a subset of the receivers}. Finally, we propose hyper-graphic linear network coding (HLNC), a novel throughput-optimal and APDD-approximating LNC technique based on a hypergraph model of receivers' packet reception state. We implement it under different availability of receiver feedback, and numerically compare its performance with RLNC and a heuristic general IDNC technique. The results show that the APDD performance of HLNC is better under all tested system settings, even if receiver feedback is only collected intermittently

    Sleeping Multi-Armed Bandit Learning for Fast Uplink Grant Allocation in Machine Type Communications

    Full text link
    Scheduling fast uplink grant transmissions for machine type communications (MTCs) is one of the main challenges of future wireless systems. In this paper, a novel fast uplink grant scheduling method based on the theory of multi-armed bandits (MABs) is proposed. First, a single quality-of-service metric is defined as a combination of the value of data packets, maximum tolerable access delay, and data rate. Since full knowledge of these metrics for all machine type devices (MTDs) cannot be known in advance at the base station (BS) and the set of active MTDs changes over time, the problem is modeled as a sleeping MAB with stochastic availability and a stochastic reward function. In particular, given that, at each time step, the knowledge on the set of active MTDs is probabilistic, a novel probabilistic sleeping MAB algorithm is proposed to maximize the defined metric. Analysis of the regret is presented and the effect of the prediction error of the source traffic prediction algorithm on the performance of the proposed sleeping MAB algorithm is investigated. Moreover, to enable fast uplink allocation for multiple MTDs at each time, a novel method is proposed based on the concept of best arms ordering in the MAB setting. Simulation results show that the proposed framework yields a three-fold reduction in latency compared to a random scheduling policy since it prioritises the scheduling of MTDs that have stricter latency requirements. Moreover, by properly balancing the exploration versus exploitation tradeoff, the proposed algorithm can provide system fairness by allowing the most important MTDs to be scheduled more often while also allowing the less important MTDs to be selected enough times to ensure the accuracy of estimation of their importance
    corecore