30,582 research outputs found

    Accurate multi-boson long-time dynamics in triple-well periodic traps

    Full text link
    To solve the many-boson Schr\"odinger equation we utilize the Multiconfigurational time-dependent Hartree method for bosons (MCTDHB). To be able to attack larger systems and/or to propagate the solution for longer times, we implement a parallel version of the MCTDHB method thereby realizing the recently proposed [Streltsov {\it et al.} arXiv:0910.2577v1] novel idea how to construct efficiently the result of the action of the Hamiltonian on a bosonic state vector. We study the real-space dynamics of repulsive bosonic systems made of N=12, 51 and 3003 bosons in triple-well periodic potentials. The ground state of this system is three-fold fragmented. By suddenly strongly distorting the trap potential, the system performs complex many-body quantum dynamics. At long times it reveals a tendency to an oscillatory behavior around a threefold fragmented state. These oscillations are strongly suppressed and damped by quantum depletions. In spite of the richness of the observed dynamics, the three time-adaptive orbitals of MCTDHB(M=3) are capable to describe the many-boson quantum dynamics of the system for short and intermediate times. For longer times, however, more self-consistent time-adaptive orbitals are needed to correctly describe the non-equilibrium many-body physics. The convergence of the MCTDHB(MM) method with the number MM of self-consistent time-dependent orbitals used is demonstrated.Comment: 37 pages, 7 figure

    Non-perturbative response: chaos versus disorder

    Full text link
    Quantized chaotic systems are generically characterized by two energy scales: the mean level spacing Δ\Delta, and the bandwidth Δb∝ℏ\Delta_b\propto\hbar. This implies that with respect to driving such systems have an adiabatic, a perturbative, and a non-perturbative regimes. A "strong" quantal non-perturbative response effect is found for {\em disordered} systems that are described by random matrix theory models. Is there a similar effect for quantized {\em chaotic} systems? Theoretical arguments cannot exclude the existence of a "weak" non-perturbative response effect, but our numerics demonstrate an unexpected degree of semiclassical correspondence.Comment: 8 pages, 2 figures, final version to be published in JP

    Subwavelength optical spatial solitons and three-dimensional localization in disordered ferroelectrics: towards metamaterials of nonlinear origin

    Full text link
    We predict the existence of a novel class of multidimensional light localizations in out-of-equilibrium ferroelectric crystals. In two dimensions, the non-diffracting beams form at arbitrary low power level and propagate even when their width is well below the optical wavelength. In three dimensions, a novel form of subwavelength light bullets is found. The effects emerge when compositionally disordered crystals are brought to their metastable glassy state, and can have a profound impact on super-resolved imaging and ultra-dense optical storage, while resembling many features of the so-called metamaterials, as the suppression of evanescent waves.Comment: 4 pages, 3 figure

    Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma. Part one: Sunspot dynamics

    Full text link
    In this study, the nonlinear analysis of the sunspot index is embedded in the non-extensive statistical theory of Tsallis. The triplet of Tsallis, as well as the correlation dimension and the Lyapunov exponent spectrum were estimated for the SVD components of the sunspot index timeseries. Also the multifractal scaling exponent spectrum, the generalized Renyi dimension spectrum and the spectrum of the structure function exponents were estimated experimentally and theoretically by using the entropy principle included in Tsallis non extensive statistical theory, following Arimitsu and Arimitsu. Our analysis showed clearly the following: a) a phase transition process in the solar dynamics from high dimensional non Gaussian SOC state to a low dimensional non Gaussian chaotic state, b) strong intermittent solar turbulence and anomalous (multifractal) diffusion solar process, which is strengthened as the solar dynamics makes phase transition to low dimensional chaos in accordance to Ruzmaikin, Zeleny and Milovanov studies c) faithful agreement of Tsallis non equilibrium statistical theory with the experimental estimations of i) non-Gaussian probability distribution function, ii) multifractal scaling exponent spectrum and generalized Renyi dimension spectrum, iii) exponent spectrum of the structure functions estimated for the sunspot index and its underlying non equilibrium solar dynamics.Comment: 40 pages, 11 figure
    • 

    corecore