4,656 research outputs found

    Distributed Computing in a Pandemic

    Get PDF
    The current COVID-19 global pandemic caused by the SARS-CoV-2 betacoronavirus has resulted in over a million deaths and is having a grave socio-economic impact, hence there is an urgency to find solutions to key research challenges. Much of this COVID-19 research depends on distributed computing. In this article, I review distributed architectures -- various types of clusters, grids and clouds -- that can be leveraged to perform these tasks at scale, at high-throughput, with a high degree of parallelism, and which can also be used to work collaboratively. High-performance computing (HPC) clusters will be used to carry out much of this work. Several bigdata processing tasks used in reducing the spread of SARS-CoV-2 require high-throughput approaches, and a variety of tools, which Hadoop and Spark offer, even using commodity hardware. Extremely large-scale COVID-19 research has also utilised some of the world's fastest supercomputers, such as IBM's SUMMIT -- for ensemble docking high-throughput screening against SARS-CoV-2 targets for drug-repurposing, and high-throughput gene analysis -- and Sentinel, an XPE-Cray based system used to explore natural products. Grid computing has facilitated the formation of the world's first Exascale grid computer. This has accelerated COVID-19 research in molecular dynamics simulations of SARS-CoV-2 spike protein interactions through massively-parallel computation and was performed with over 1 million volunteer computing devices using the Folding@home platform. Grids and clouds both can also be used for international collaboration by enabling access to important datasets and providing services that allow researchers to focus on research rather than on time-consuming data-management tasks

    Molecular docking: Shifting paradigms in drug discovery

    Get PDF
    Molecular docking is an established in silico structure-based method widely used in drug discovery. Docking enables the identification of novel compounds of therapeutic interest, predicting ligand-target interactions at a molecular level, or delineating structure-activity relationships (SAR), without knowing a priori the chemical structure of other target modulators. Although it was originally developed to help understanding the mechanisms of molecular recognition between small and large molecules, uses and applications of docking in drug discovery have heavily changed over the last years. In this review, we describe how molecular docking was firstly applied to assist in drug discovery tasks. Then, we illustrate newer and emergent uses and applications of docking, including prediction of adverse effects, polypharmacology, drug repurposing, and target fishing and profiling, discussing also future applications and further potential of this technique when combined with emergent techniques, such as artificial intelligence

    High-Throughput Screening for Drug Discovery

    Get PDF
    The book focuses on various aspects and properties of high-throughput screening (HTS), which is of great importance in the development of novel drugs to treat communicable and non-communicable diseases. Chapters in this volume discuss HTS methodologies, resources, and technologies and highlight the significance of HTS in personalized and precision medicine

    Artificial intelligence, machine learning, and drug repurposing in cancer

    Get PDF
    Introduction: Drug repurposing provides a cost-effective strategy to re-use approved drugs for new medical indications. Several machine learning (ML) and artificial intelligence (AI) approaches have been developed for systematic identification of drug repurposing leads based on big data resources, hence further accelerating and de-risking the drug development process by computational means. Areas covered: The authors focus on supervised ML and AI methods that make use of publicly available databases and information resources. While most of the example applications are in the field of anticancer drug therapies, the methods and resources reviewed are widely applicable also to other indications including COVID-19 treatment. A particular emphasis is placed on the use of comprehensive target activity profiles that enable a systematic repurposing process by extending the target profile of drugs to include potent off-targets with therapeutic potential for a new indication. Expert opinion: The scarcity of clinical patient data and the current focus on genetic aberrations as primary drug targets may limit the performance of anticancer drug repurposing approaches that rely solely on genomics-based information. Functional testing of cancer patient cells exposed to a large number of targeted therapies and their combinations provides an additional source of repurposing information for tissue-aware AI approaches.Peer reviewe

    Artificial Intelligence for Drug Discovery: Are We There Yet?

    Full text link
    Drug discovery is adapting to novel technologies such as data science, informatics, and artificial intelligence (AI) to accelerate effective treatment development while reducing costs and animal experiments. AI is transforming drug discovery, as indicated by increasing interest from investors, industrial and academic scientists, and legislators. Successful drug discovery requires optimizing properties related to pharmacodynamics, pharmacokinetics, and clinical outcomes. This review discusses the use of AI in the three pillars of drug discovery: diseases, targets, and therapeutic modalities, with a focus on small molecule drugs. AI technologies, such as generative chemistry, machine learning, and multi-property optimization, have enabled several compounds to enter clinical trials. The scientific community must carefully vet known information to address the reproducibility crisis. The full potential of AI in drug discovery can only be realized with sufficient ground truth and appropriate human intervention at later pipeline stages.Comment: 30 pages, 4 figures, 184 reference
    • …
    corecore