4,891 research outputs found

    Image Retrieval Method Combining Bayes and SVM Classifier Based on Relevance Feedback with Application to Small-scale Datasets

    Get PDF
    A vast amount of images has been generated due to the diversity and digitalization of devices for image acquisition. However, the gap between low-level visual features and high-level semantic representations has been a major concern that hinders retrieval accuracy. A retrieval method based on the transfer learning model and the relevance feedback technique was formulated in this study to optimize the dynamic trade-off between the structural complexity and retrieval performance of the small- and medium-scale content-based image retrieval (CBIR) system. First, the pretrained deep learning model was fine-tuned to extract features from target datasets. Then, the target dataset was clustered into the relative and irrelative image library by exploring the Bayes classifier. Next, the support vector machine (SVM) classifier was used to retrieve similar images in the relative library. Finally, the relevance feedback technique was employed to update the parameters of both classifiers iteratively until the request for the retrieval was met. Results demonstrate that the proposed method achieves 95.87% in classification index F1 - Score, which surpasses that of the suboptimal approach DCNN-BSVM by 6.76%. The performance of the proposed method is superior to that of other approaches considering retrieval criteria as average precision, average recall, and mean average precision. The study indicates that the Bayes + SVM combined classifier accomplishes the optimal quantities more efficiently than only either Bayes or SVM classifier under the transfer learning framework. Transfer learning skillfully excels training from scratch considering the feature extraction modes. This study provides a certain reference for other insights on applications of small- and medium-scale CBIR systems with inadequate samples

    Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement

    Get PDF
    Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method

    Advanced Processing of Multispectral Satellite Data for Detecting and Learning Knowledge-based Features of Planetary Surface Anomalies

    Get PDF
    abstract: The marked increase in the inflow of remotely sensed data from satellites have trans- formed the Earth and Space Sciences to a data rich domain creating a rich repository for domain experts to analyze. These observations shed light on a diverse array of disciplines ranging from monitoring Earth system components to planetary explo- ration by highlighting the expected trend and patterns in the data. However, the complexity of these patterns from local to global scales, coupled with the volume of this ever-growing repository necessitates advanced techniques to sequentially process the datasets to determine the underlying trends. Such techniques essentially model the observations to learn characteristic parameters of data-generating processes and highlight anomalous planetary surface observations to help domain scientists for making informed decisions. The primary challenge in defining such models arises due to the spatio-temporal variability of these processes. This dissertation introduces models of multispectral satellite observations that sequentially learn the expected trend from the data by extracting salient features of planetary surface observations. The main objectives are to learn the temporal variability for modeling dynamic processes and to build representations of features of interest that is learned over the lifespan of an instrument. The estimated model parameters are then exploited in detecting anomalies due to changes in land surface reflectance as well as novelties in planetary surface landforms. A model switching approach is proposed that allows the selection of the best matched representation given the observations that is designed to account for rate of time-variability in land surface. The estimated parameters are exploited to design a change detector, analyze the separability of change events, and form an expert-guided representation of planetary landforms for prioritizing the retrieval of scientifically relevant observations with both onboard and post-downlink applications.Dissertation/ThesisDoctoral Dissertation Computer Engineering 201
    • …
    corecore