575 research outputs found

    Detecting Repackaged Android Applications Using Perceptual Hashing

    Get PDF
    The last decade has shown a steady rate of Android device dominance in market share and the emergence of hundreds of thousands of apps available to the public. Because of the ease of reverse engineering Android applications, repackaged malicious apps that clone existing code have become a severe problem in the marketplace. This research proposes a novel repackaged detection system based on perceptual hashes of vetted Android apps and their associated dynamic user interface (UI) behavior. Results show that an average hash approach produces 88% accuracy (indicating low false negative and false positive rates) in a sample set of 4878 Android apps, including 2151 repackaged apps. The approach is the first dynamic method proposed in the research community using image-based hashing techniques with reasonable performance to other known dynamic approaches and the possibility for practical implementation at scale for new applications entering the Android market

    A Smart and Robust Automatic Inspection of Printed Labels Using an Image Hashing Technique

    Get PDF
    This work is focused on the development of a smart and automatic inspection system for printed labels. This is a challenging problem to solve since the collected labels are typically subjected to a variety of geometric and non-geometric distortions. Even though these distortions do not affect the content of a label, they have a substantial impact on the pixel value of the label image. Second, the faulty area may be extremely small as compared to the overall size of the labelling system. A further necessity is the ability to locate and isolate faults. To overcome this issue, a robust image hashing approach for the detection of erroneous labels has been developed. Image hashing techniques are generally used in image authentication, social event detection and image copy detection. Most of the image hashing methods are computationally extensive and also misjudge the images processed through the geometric transformation. In this paper, we present a novel idea to detect the faults in labels by incorporating image hashing along with the traditional computer vision algorithms to reduce the processing time. It is possible to apply Speeded Up Robust Features (SURF) to acquire alignment parameters so that the scheme is resistant to geometric and other distortions. The statistical mean is employed to generate the hash value. Even though this feature is quite simple, it has been found to be extremely effective in terms of computing complexity and the precision with which faults are detected, as proven by the experimental findings. Experimental results show that the proposed technique achieved an accuracy of 90.12%

    Deep learning approach for Touchless Palmprint Recognition based on Alexnet and Fuzzy Support Vector Machine

    Get PDF
    Due to stable and discriminative features, palmprint-based biometrics has been gaining popularity in recent years. Most of the traditional palmprint recognition systems are designed with a group of hand-crafted features that ignores some additional features. For tackling the problem described above, a Convolution Neural Network (CNN) model inspired by Alex-net that learns the features from the ROI images and classifies using a fuzzy support vector machine is proposed. The output of the CNN is fed as input to the fuzzy Support vector machine. The CNN\u27s receptive field aids in extracting the most discriminative features from the palmprint images, and Fuzzy SVM results in a robust classification. The experiments are conducted on popular contactless datasets such as IITD, POLYU2, Tongji, and CASIA databases. Results demonstrate our approach outperformers several state-of-art techniques for palmprint recognition. Using this approach, we obtain 99.98% testing accuracy for the Tongji dataset and 99.76 % for the POLYU-II datasets

    Geometric and photometric affine invariant image registration

    Get PDF
    This thesis aims to present a solution to the correspondence problem for the registration of wide-baseline images taken from uncalibrated cameras. We propose an affine invariant descriptor that combines the geometry and photometry of the scene to find correspondences between both views. The geometric affine invariant component of the descriptor is based on the affine arc-length metric, whereas the photometry is analysed by invariant colour moments. A graph structure represents the spatial distribution of the primitive features; i.e. nodes correspond to detected high-curvature points, whereas arcs represent connectivities by extracted contours. After matching, we refine the search for correspondences by using a maximum likelihood robust algorithm. We have evaluated the system over synthetic and real data. The method is endemic to propagation of errors introduced by approximations in the system.BAE SystemsSelex Sensors and Airborne System

    Privacy-Preserving Biometric Authentication

    Full text link
    Biometric-based authentication provides a highly accurate means of authentication without requiring the user to memorize or possess anything. However, there are three disadvantages to the use of biometrics in authentication; any compromise is permanent as it is impossible to revoke biometrics; there are significant privacy concerns with the loss of biometric data; and humans possess only a limited number of biometrics, which limits how many services can use or reuse the same form of authentication. As such, enhancing biometric template security is of significant research interest. One of the methodologies is called cancellable biometric template which applies an irreversible transformation on the features of the biometric sample and performs the matching in the transformed domain. Yet, this is itself susceptible to specific classes of attacks, including hill-climb, pre-image, and attacks via records multiplicity. This work has several outcomes and contributions to the knowledge of privacy-preserving biometric authentication. The first of these is a taxonomy structuring the current state-of-the-art and provisions for future research. The next of these is a multi-filter framework for developing a robust and secure cancellable biometric template, designed specifically for fingerprint biometrics. This framework is comprised of two modules, each of which is a separate cancellable fingerprint template that has its own matching and measures. The matching for this is based on multiple thresholds. Importantly, these methods show strong resistance to the above-mentioned attacks. Another of these outcomes is a method that achieves a stable performance and can be used to be embedded into a Zero-Knowledge-Proof protocol. In this novel method, a new strategy was proposed to improve the recognition error rates which is privacy-preserving in the untrusted environment. The results show promising performance when evaluated on current datasets

    Representations for Cognitive Vision : a Review of Appearance-Based, Spatio-Temporal, and Graph-Based Approaches

    Get PDF
    The emerging discipline of cognitive vision requires a proper representation of visual information including spatial and temporal relationships, scenes, events, semantics and context. This review article summarizes existing representational schemes in computer vision which might be useful for cognitive vision, a and discusses promising future research directions. The various approaches are categorized according to appearance-based, spatio-temporal, and graph-based representations for cognitive vision. While the representation of objects has been covered extensively in computer vision research, both from a reconstruction as well as from a recognition point of view, cognitive vision will also require new ideas how to represent scenes. We introduce new concepts for scene representations and discuss how these might be efficiently implemented in future cognitive vision systems
    corecore