466 research outputs found

    A Novel Multimodal Image Fusion Method Using Hybrid Wavelet-based Contourlet Transform

    Full text link
    Various image fusion techniques have been studied to meet the requirements of different applications such as concealed weapon detection, remote sensing, urban mapping, surveillance and medical imaging. Combining two or more images of the same scene or object produces a better application-wise visible image. The conventional wavelet transform (WT) has been widely used in the field of image fusion due to its advantages, including multi-scale framework and capability of isolating discontinuities at object edges. However, the contourlet transform (CT) has been recently adopted and applied to the image fusion process to overcome the drawbacks of WT with its own advantages. Based on the experimental studies in this dissertation, it is proven that the contourlet transform is more suitable than the conventional wavelet transform in performing the image fusion. However, it is important to know that the contourlet transform also has major drawbacks. First, the contourlet transform framework does not provide shift-invariance and structural information of the source images that are necessary to enhance the fusion performance. Second, unwanted artifacts are produced during the image decomposition process via contourlet transform framework, which are caused by setting some transform coefficients to zero for nonlinear approximation. In this dissertation, a novel fusion method using hybrid wavelet-based contourlet transform (HWCT) is proposed to overcome the drawbacks of both conventional wavelet and contourlet transforms, and enhance the fusion performance. In the proposed method, Daubechies Complex Wavelet Transform (DCxWT) is employed to provide both shift-invariance and structural information, and Hybrid Directional Filter Bank (HDFB) is used to achieve less artifacts and more directional information. DCxWT provides shift-invariance which is desired during the fusion process to avoid mis-registration problem. Without the shift-invariance, source images are mis-registered and non-aligned to each other; therefore, the fusion results are significantly degraded. DCxWT also provides structural information through its imaginary part of wavelet coefficients; hence, it is possible to preserve more relevant information during the fusion process and this gives better representation of the fused image. Moreover, HDFB is applied to the fusion framework where the source images are decomposed to provide abundant directional information, less complexity, and reduced artifacts. The proposed method is applied to five different categories of the multimodal image fusion, and experimental study is conducted to evaluate the performance of the proposed method in each multimodal fusion category using suitable quality metrics. Various datasets, fusion algorithms, pre-processing techniques and quality metrics are used for each fusion category. From every experimental study and analysis in each fusion category, the proposed method produced better fusion results than the conventional wavelet and contourlet transforms; therefore, its usefulness as a fusion method has been validated and its high performance has been verified

    Multispectral Palmprint Encoding and Recognition

    Full text link
    Palmprints are emerging as a new entity in multi-modal biometrics for human identification and verification. Multispectral palmprint images captured in the visible and infrared spectrum not only contain the wrinkles and ridge structure of a palm, but also the underlying pattern of veins; making them a highly discriminating biometric identifier. In this paper, we propose a feature encoding scheme for robust and highly accurate representation and matching of multispectral palmprints. To facilitate compact storage of the feature, we design a binary hash table structure that allows for efficient matching in large databases. Comprehensive experiments for both identification and verification scenarios are performed on two public datasets -- one captured with a contact-based sensor (PolyU dataset), and the other with a contact-free sensor (CASIA dataset). Recognition results in various experimental setups show that the proposed method consistently outperforms existing state-of-the-art methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA) are the lowest reported in literature on both dataset and clearly indicate the viability of palmprint as a reliable and promising biometric. All source codes are publicly available.Comment: Preliminary version of this manuscript was published in ICCV 2011. Z. Khan A. Mian and Y. Hu, "Contour Code: Robust and Efficient Multispectral Palmprint Encoding for Human Recognition", International Conference on Computer Vision, 2011. MATLAB Code available: https://sites.google.com/site/zohaibnet/Home/code

    Subjectively optimised multi-exposure and multi-focus image fusion with compensation for camera shake

    Get PDF
    Multi-exposure image fusion algorithms are used for enhancing the perceptual quality of an image captured by sensors of limited dynamic range. This is achieved by rendering a single scene based on multiple images captured at different exposure times. Similarly, multi-focus image fusion is used when the limited depth of focus on a selected focus setting of a camera results in parts of an image being out of focus. The solution adopted is to fuse together a number of multi-focus images to create an image that is focused throughout. In this paper we propose a single algorithm that can perform both multi-focus and multi-exposure image fusion. This algorithm is a novel approach in which a set of unregistered multiexposure/focus images is first registered before being fused. The registration of images is done via identifying matching key points in constituent images using Scale Invariant Feature Transforms (SIFT). The RANdom SAmple Consensus (RANSAC) algorithm is used to identify inliers of SIFT key points removing outliers that can cause errors in the registration process. Finally we use the Coherent Point Drift algorithm to register the images, preparing them to be fused in the subsequent fusion stage. For the fusion of images, a novel approach based on an improved version of a Wavelet Based Contourlet Transform (WBCT) is used. The experimental results as follows prove that the proposed algorithm is capable of producing HDR, or multi-focus images by registering and fusing a set of multi-exposure or multi-focus images taken in the presence of camera shake

    Multiexposure and multifocus image fusion with multidimensional camera shake compensation

    Get PDF
    Multiexposure image fusion algorithms are used for enhancing the perceptual quality of an image captured by sensors of limited dynamic range. This is achieved by rendering a single scene based on multiple images captured at different exposure times. Similarly, multifocus image fusion is used when the limited depth of focus on a selected focus setting of a camera results in parts of an image being out of focus. The solution adopted is to fuse together a number of multifocus images to create an image that is focused throughout. A single algorithm that can perform both multifocus and multiexposure image fusion is proposed. This algorithm is a new approach in which a set of unregistered multiexposure focus images is first registered before being fused to compensate for the possible presence of camera shake. The registration of images is done via identifying matching key-points in constituent images using scale invariant feature transforms. The random sample consensus algorithm is used to identify inliers of SIFT key-points removing outliers that can cause errors in the registration process. Finally, the coherent point drift algorithm is used to register the images, preparing them to be fused in the subsequent fusion stage. For the fusion of images, a new approach based on an improved version of a wavelet-based contourlet transform is used. The experimental results and the detailed analysis presented prove that the proposed algorithm is capable of producing high-dynamic range (HDR) or multifocus images by registering and fusing a set of multiexposure or multifocus images taken in the presence of camera shake. Further,comparison of the performance of the proposed algorithm with a number of state-of-the art algorithms and commercial software packages is provided. In particular, our literature review has revealed that this is one of the first attempts where the compensation of camera shake, a very likely practical problem that can result in HDR image capture using handheld devices, has been addressed as a part of a multifocus and multiexposure image enhancement system. © 2013 Society of Photo-Optical Instrumentatio Engineers (SPIE)

    Use of Coherent Point Drift in computer vision applications

    Get PDF
    This thesis presents the novel use of Coherent Point Drift in improving the robustness of a number of computer vision applications. CPD approach includes two methods for registering two images - rigid and non-rigid point set approaches which are based on the transformation model used. The key characteristic of a rigid transformation is that the distance between points is preserved, which means it can be used in the presence of translation, rotation, and scaling. Non-rigid transformations - or affine transforms - provide the opportunity of registering under non-uniform scaling and skew. The idea is to move one point set coherently to align with the second point set. The CPD method finds both the non-rigid transformation and the correspondence distance between two point sets at the same time without having to use a-priori declaration of the transformation model used. The first part of this thesis is focused on speaker identification in video conferencing. A real-time, audio-coupled video based approach is presented, which focuses more on the video analysis side, rather than the audio analysis that is known to be prone to errors. CPD is effectively utilised for lip movement detection and a temporal face detection approach is used to minimise false positives if face detection algorithm fails to perform. The second part of the thesis is focused on multi-exposure and multi-focus image fusion with compensation for camera shake. Scale Invariant Feature Transforms (SIFT) are first used to detect keypoints in images being fused. Subsequently this point set is reduced to remove outliers, using RANSAC (RANdom Sample Consensus) and finally the point sets are registered using CPD with non-rigid transformations. The registered images are then fused with a Contourlet based image fusion algorithm that makes use of a novel alpha blending and filtering technique to minimise artefacts. The thesis evaluates the performance of the algorithm in comparison to a number of state-of-the-art approaches, including the key commercial products available in the market at present, showing significantly improved subjective quality in the fused images. The final part of the thesis presents a novel approach to Vehicle Make & Model Recognition in CCTV video footage. CPD is used to effectively remove skew of vehicles detected as CCTV cameras are not specifically configured for the VMMR task and may capture vehicles at different approaching angles. A LESH (Local Energy Shape Histogram) feature based approach is used for vehicle make and model recognition with the novelty that temporal processing is used to improve reliability. A number of further algorithms are used to maximise the reliability of the final outcome. Experimental results are provided to prove that the proposed system demonstrates an accuracy in excess of 95% when tested on real CCTV footage with no prior camera calibration

    Multimodality Image Fusion by Using Activity Level Measurement and Counterlet Transform

    Get PDF
    In this paper we propose multimodality Medical Image Fusion based on counterlet transform . The objective of image fusion is combine two images to produce single image that provide more information. In this paper, we propose multim odality Image Fusion (MIF) method, this is done on activity level measurement contourlet transform. Multimodality image fusion technology can be used in medical field by doctors to diagnose the disease. Main issue in multimodality image fusion is how to fuse two or more images of different modalities & how we get more clear and accurate information. In this paper to fuse the image firstly we decompose the source image. The low - frequency subbands (LFSs) are fused by using the novel combined ALM (Activity level measurement), and the high - frequency subbands (HFSs) are fused according to their ̳local average energy of the neighborhood of coefficients. Then inverse contourlet transform (ICNT) is used to apply on the fused coefficients to get the fused image. Experimental results demonstrate that the proposed scheme is evaluated by various quantitative measures like Mutual Information, Entropy and Spatial Frequency etc. The purpose of this paper is to replace the wavelet transform with counterlet transform to make image much smoother and to increase the efficiency of the fusion method and quality in the Image

    A Novel Fusion Framework Based on Adaptive PCNN in NSCT Domain for Whole-Body PET and CT Images

    Get PDF
    The PET and CT fusion images, combining the anatomical and functional information, have important clinical meaning. This paper proposes a novel fusion framework based on adaptive pulse-coupled neural networks (PCNNs) in nonsubsampled contourlet transform (NSCT) domain for fusing whole-body PET and CT images. Firstly, the gradient average of each pixel is chosen as the linking strength of PCNN model to implement self-adaptability. Secondly, to improve the fusion performance, the novel sum-modified Laplacian (NSML) and energy of edge (EOE) are extracted as the external inputs of the PCNN models for low- and high-pass subbands, respectively. Lastly, the rule of max region energy is adopted as the fusion rule and different energy templates are employed in the low- and high-pass subbands. The experimental results on whole-body PET and CT data (239 slices contained by each modality) show that the proposed framework outperforms the other six methods in terms of the seven commonly used fusion performance metrics

    An efficient adaptive fusion scheme for multifocus images in wavelet domain using statistical properties of neighborhood

    Get PDF
    In this paper we present a novel fusion rule which can efficiently fuse multifocus images in wavelet domain by taking weighted average of pixels. The weights are adaptively decided using the statistical properties of the neighborhood. The main idea is that the eigen value of unbiased estimate of the covariance matrix of an image block depends on the strength of edges in the block and thus makes a good choice for weight to be given to the pixel, giving more weightage to pixel with sharper neighborhood. The performance of the proposed method have been extensively tested on several pairs of multifocus images and also compared quantitatively with various existing methods with the help of well known parameters including Petrovic and Xydeas image fusion metric. Experimental results show that performance evaluation based on entropy, gradient, contrast or deviation, the criteria widely used for fusion analysis, may not be enough. This work demonstrates that in some cases, these evaluation criteria are not consistent with the ground truth. It also demonstrates that Petrovic and Xydeas image fusion metric is a more appropriate criterion, as it is in correlation with ground truth as well as visual quality in all the tested fused images. The proposed novel fusion rule significantly improves contrast information while preserving edge information. The major achievement of the work is that it significantly increases the quality of the fused image, both visually and in terms of quantitative parameters, especially sharpness with minimum fusion artifacts
    corecore