3,683 research outputs found

    A Review on Encryption and Decryption of Image using Canonical Transforms & Scrambling Technique

    Get PDF
    Data security is a prime objective of various researchers & organizations. Because we have to send the data from one end to another end so it is very much important for the sender that the information will reach to the authorized receiver & with minimum loss in the original data. Data security is required in various fields like banking, defence, medical etc. So our objective here is that how to secure the data. So for this purpose we have to use encryption schemes. Encryption is basically used to secure the data or information which we have to transmit or to store. Various methods for the encryption are provided by various researchers. Some of the methods are based on the random keys & some are based on the scrambling scheme. Chaotic map, logistic map, Fourier transform & Fractional Fourier transform etc. are widely used for the encryption process. Now day’s image encryption method is very popular for the encryption scheme. The information is encrypted in the form of image. The encryption is done in a format so no one can read that image. Only the person who are authenticated or have authentication keys can only read that data or information. So this work is based on the same fundamental concept. Here we use Linear Canonical Transform for the encryption process

    Video Encryption Technique Based on Hybrid Chaotic Maps and Multi- Operation keys

    Get PDF
    During these critical times of the pandemic, a reliable and fast encryption technique for encrypting medical data for patients is a critical topic to consider. This epidemic forced governments and health care organizations to observe patients of COVID-19. The idea of encryption video is gaining in popularity, because of the growing use of communication technology like video conferencing to conclude corporate meetings and presentations. Video data sent back and forth between sender and recipient must also use the unsecured communication medium available, the internet. This paper proposed a way to encrypt video by using hybrid schemes, which used the advantage of both henon, elliptic curve, and logistic. The proposed method achieved significantly improved results. Simulations results are performed to gauge the efficacy of the presented method

    Roadmap on optical security

    Get PDF
    Information security and authentication are important challenges facing society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and development of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], the digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Pérez-Cabré], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections: Sheridan reviews phase retrieval algorithms to perform different attacks, whereas Situ discusses nonlinear optical encryption techniques and the development of a rigorous optical information security theory. The fourth category with two contributions reports how encryption could be implemented at the nano- or micro-scale. Naruse discusses the use of nanostructures in security applications and Carnicer proposes encoding information in a tightly focused beam. In the fifth category, encryption based on ghost imaging using single-pixel detectors is also considered. In particular, the authors [Chen, Tajahuerce] emphasize the need for more specialized hardware and image processing algorithms. Finally, in the sixth category, Mosk and Javidi analyze in their corresponding papers how quantum imaging can benefit optical encryption systems. Sources that use few photons make encryption systems much more difficult to attack, providing a secure method for authentication.Centro de Investigaciones ÓpticasConsejo Nacional de Investigaciones Científicas y Técnica

    Entropy in Image Analysis III

    Get PDF
    Image analysis can be applied to rich and assorted scenarios; therefore, the aim of this recent research field is not only to mimic the human vision system. Image analysis is the main methods that computers are using today, and there is body of knowledge that they will be able to manage in a totally unsupervised manner in future, thanks to their artificial intelligence. The articles published in the book clearly show such a future

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    Research on digital image watermark encryption based on hyperchaos

    Get PDF
    The digital watermarking technique embeds meaningful information into one or more watermark images hidden in one image, in which it is known as a secret carrier. It is difficult for a hacker to extract or remove any hidden watermark from an image, and especially to crack so called digital watermark. The combination of digital watermarking technique and traditional image encryption technique is able to greatly improve anti-hacking capability, which suggests it is a good method for keeping the integrity of the original image. The research works contained in this thesis include: (1)A literature review the hyperchaotic watermarking technique is relatively more advantageous, and becomes the main subject in this programme. (2)The theoretical foundation of watermarking technologies, including the human visual system (HVS), the colour space transform, discrete wavelet transform (DWT), the main watermark embedding algorithms, and the mainstream methods for improving watermark robustness and for evaluating watermark embedding performance. (3) The devised hyperchaotic scrambling technique it has been applied to colour image watermark that helps to improve the image encryption and anti-cracking capabilities. The experiments in this research prove the robustness and some other advantages of the invented technique. This thesis focuses on combining the chaotic scrambling and wavelet watermark embedding to achieve a hyperchaotic digital watermark to encrypt digital products, with the human visual system (HVS) and other factors taken into account. This research is of significant importance and has industrial application value

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue

    On the Application of PSpice for Localised Cloud Security

    Get PDF
    The work reported in this thesis commenced with a review of methods for creating random binary sequences for encoding data locally by the client before storing in the Cloud. The first method reviewed investigated evolutionary computing software which generated noise-producing functions from natural noise, a highly-speculative novel idea since noise is stochastic. Nevertheless, a function was created which generated noise to seed chaos oscillators which produced random binary sequences and this research led to a circuit-based one-time pad key chaos encoder for encrypting data. Circuit-based delay chaos oscillators, initialised with sampled electronic noise, were simulated in a linear circuit simulator called PSpice. Many simulation problems were encountered because of the nonlinear nature of chaos but were solved by creating new simulation parts, tools and simulation paradigms. Simulation data from a range of chaos sources was exported and analysed using Lyapunov analysis and identified two sources which produced one-time pad sequences with maximum entropy. This led to an encoding system which generated unlimited, infinitely-long period, unique random one-time pad encryption keys for plaintext data length matching. The keys were studied for maximum entropy and passed a suite of stringent internationally-accepted statistical tests for randomness. A prototype containing two delay chaos sources initialised by electronic noise was produced on a double-sided printed circuit board and produced more than 200 Mbits of OTPs. According to Vladimir Kotelnikov in 1941 and Claude Shannon in 1945, one-time pad sequences are theoretically-perfect and unbreakable, provided specific rules are adhered to. Two other techniques for generating random binary sequences were researched; a new circuit element, memristance was incorporated in a Chua chaos oscillator, and a fractional-order Lorenz chaos system with order less than three. Quantum computing will present many problems to cryptographic system security when existing systems are upgraded in the near future. The only existing encoding system that will resist cryptanalysis by this system is the unconditionally-secure one-time pad encryption
    • …
    corecore