993 research outputs found

    Semantic Retrieval and Automatic Annotation: Linear Transformations, Correlation and Semantic Spaces

    No full text
    This paper proposes a new technique for auto-annotation and semantic retrieval based upon the idea of linearly mapping an image feature space to a keyword space. The new technique is compared to several related techniques, and a number of salient points about each of the techniques are discussed and contrasted. The paper also discusses how these techniques might actually scale to a real-world retrieval problem, and demonstrates this though a case study of a semantic retrieval technique being used on a real-world data-set (with a mix of annotated and unannotated images) from a picture library

    Crowd counting using group tracking and local features

    Get PDF
    In public venues, crowd size is a key indicator of crowd safety and stability. In this paper we propose a crowd counting algorithm that uses tracking and local features to count the number of people in each group as represented by a foreground blob segment, so that the total crowd estimate is the sum of the group sizes. Tracking is employed to improve the robustness of the estimate, by analysing the history of each group, including splitting and merging events. A simplified ground truth annotation strategy results in an approach with minimal setup requirements that is highly accurate

    A Novel Semantic Statistical Model for Automatic Image Annotation Using the Relationship between the Regions Based on Multi-Criteria Decision Making

    Get PDF
    Automatic image annotation has emerged as an important research topic due to the existence of the semantic gap and in addition to its potential application on image retrieval and management.  In this paper we present an approach which combines regional contexts and visual topics to automatic image annotation. Regional contexts model the relationship between the regions, whereas visual topics provide the global distribution of topics over an image. Conventional image annotation methods neglected the relationship between the regions in an image, while these regions are exactly explanation of the image semantics, therefore considering the relationship between them are helpful to annotate the images. The proposed model extracts regional contexts and visual topics from the image, and incorporates them by MCDM (Multi Criteria Decision Making) approach based on TOPSIS (Technique for Order Preference by Similarity to the Ideal Solution) method. Regional contexts and visual topics are learned by PLSA (Probability Latent Semantic Analysis) from the training data. The experiments on 5k Corel images show that integrating these two kinds of information is beneficial to image annotation.DOI:http://dx.doi.org/10.11591/ijece.v4i1.459

    Interactive Video Annotation Tool

    Get PDF
    Proceedings of: Forth International Workshop on User-Centric Technologies and applications (CONTEXTS 2010). Valencia, 7-10 September , 2010.Abstract: Increasingly computer vision discipline needs annotated video databases to realize assessment tasks. Manually providing ground truth data to multimedia resources is a very expensive work in terms of effort, time and economic resources. Automatic and semi-automatic video annotation and labeling is the faster and more economic way to get ground truth for quite large video collections. In this paper, we describe a new automatic and supervised video annotation tool. Annotation tool is a modified version of ViPER-GT tool. ViPER-GT standard version allows manually editing and reviewing video metadata to generate assessment data. Automatic annotation capability is possible thanks to an incorporated tracking system which can deal the visual data association problem in real time. The research aim is offer a system which enables spends less time doing valid assessment models.Publicad

    Hybrid image representation methods for automatic image annotation: a survey

    Get PDF
    In most automatic image annotation systems, images are represented with low level features using either global methods or local methods. In global methods, the entire image is used as a unit. Local methods divide images into blocks where fixed-size sub-image blocks are adopted as sub-units; or into regions by using segmented regions as sub-units in images. In contrast to typical automatic image annotation methods that use either global or local features exclusively, several recent methods have considered incorporating the two kinds of information, and believe that the combination of the two levels of features is beneficial in annotating images. In this paper, we provide a survey on automatic image annotation techniques according to one aspect: feature extraction, and, in order to complement existing surveys in literature, we focus on the emerging image annotation methods: hybrid methods that combine both global and local features for image representation

    Image annotation and retrieval based on multi-modal feature clustering and similarity propagation.

    Get PDF
    The performance of content-based image retrieval systems has proved to be inherently constrained by the used low level features, and cannot give satisfactory results when the user\u27s high level concepts cannot be expressed by low level features. In an attempt to bridge this semantic gap, recent approaches started integrating both low level-visual features and high-level textual keywords. Unfortunately, manual image annotation is a tedious process and may not be possible for large image databases. In this thesis we propose a system for image retrieval that has three mains components. The first component of our system consists of a novel possibilistic clustering and feature weighting algorithm based on robust modeling of the Generalized Dirichlet (GD) finite mixture. Robust estimation of the mixture model parameters is achieved by incorporating two complementary types of membership degrees. The first one is a posterior probability that indicates the degree to which a point fits the estimated distribution. The second membership represents the degree of typicality and is used to indentify and discard noise points. Robustness to noisy and irrelevant features is achieved by transforming the data to make the features independent and follow Beta distribution, and learning optimal relevance weight for each feature subset within each cluster. We extend our algorithm to find the optimal number of clusters in an unsupervised and efficient way by exploiting some properties of the possibilistic membership function. We also outline a semi-supervised version of the proposed algorithm. In the second component of our system consists of a novel approach to unsupervised image annotation. Our approach is based on: (i) the proposed semi-supervised possibilistic clustering; (ii) a greedy selection and joining algorithm (GSJ); (iii) Bayes rule; and (iv) a probabilistic model that is based on possibilistic memebership degrees to annotate an image. The third component of the proposed system consists of an image retrieval framework based on multi-modal similarity propagation. The proposed framework is designed to deal with two data modalities: low-level visual features and high-level textual keywords generated by our proposed image annotation algorithm. The multi-modal similarity propagation system exploits the mutual reinforcement of relational data and results in a nonlinear combination of the different modalities. Specifically, it is used to learn the semantic similarities between images by leveraging the relationships between features from the different modalities. The proposed image annotation and retrieval approaches are implemented and tested with a standard benchmark dataset. We show the effectiveness of our clustering algorithm to handle high dimensional and noisy data. We compare our proposed image annotation approach to three state-of-the-art methods and demonstrate the effectiveness of the proposed image retrieval system

    A novel real-time computational framework for detecting catheters and rigid guidewires in cardiac catheterization procedures

    Get PDF
    Purpose: Catheters and guidewires are used extensively in cardiac catheterization procedures such as heart arrhythmia treatment (ablation), angioplasty and congenital heart disease treatment. Detecting their positions in fluoroscopic X-ray images is important for several clinical applications, for example, motion compensation, co-registration between 2D and 3D imaging modalities and 3D object reconstruction. Methods: For the generalized framework, a multiscale vessel enhancement filter is first used to enhance the visibility of wire-like structures in the X-ray images. After applying adaptive binarization method, the centerlines of wire-like objects were extracted. Finally, the catheters and guidewires were detected as a smooth path which is reconstructed from centerlines of target wire-like objects. In order to classify electrode catheters which are mainly used in electrophysiology procedures, additional steps were proposed. First, a blob detection method, which is embedded in vessel enhancement filter with no additional computational cost, localizes electrode positions on catheters. Then the type of electrode catheters can be recognized by detecting the number of electrodes and also the shape created by a series of electrodes. Furthermore, for detecting guiding catheters or guidewires, a localized machine learning algorithm is added into the framework to distinguish between target wire objects and other wire-like artifacts. The proposed framework were tested on total 10,624 images which are from 102 image sequences acquired from 63 clinical cases. Results: Detection errors for the coronary sinus (CS) catheter, lasso catheter ring and lasso catheter body are 0.56 ± 0.28 mm, 0.64 ± 0.36 mm and 0.66 ± 0.32 mm, respectively, as well as success rates of 91.4%, 86.3% and 84.8% were achieved. Detection errors for guidewires and guiding catheters are 0.62 ± 0.48 mm and success rates are 83.5%. Conclusion: The proposed computational framework do not require any user interaction or prior models and it can detect multiple catheters or guidewires simultaneously and in real-time. The accuracy of the proposed framework is sub-mm and the methods are robust toward low-dose X-ray fluoroscopic images, which are mainly used during procedures to maintain low radiation dose

    Stacked Denoising Autoencoders and Transfer Learning for Immunogold Particles Detection and Recognition

    Get PDF
    In this paper we present a system for the detection of immunogold particles and a Transfer Learning (TL) framework for the recognition of these immunogold particles. Immunogold particles are part of a high-magnification method for the selective localization of biological molecules at the subcellular level only visible through Electron Microscopy. The number of immunogold particles in the cell walls allows the assessment of the differences in their compositions providing a tool to analise the quality of different plants. For its quantization one requires a laborious manual labeling (or annotation) of images containing hundreds of particles. The system that is proposed in this paper can leverage significantly the burden of this manual task. For particle detection we use a LoG filter coupled with a SDA. In order to improve the recognition, we also study the applicability of TL settings for immunogold recognition. TL reuses the learning model of a source problem on other datasets (target problems) containing particles of different sizes. The proposed system was developed to solve a particular problem on maize cells, namely to determine the composition of cell wall ingrowths in endosperm transfer cells. This novel dataset as well as the code for reproducing our experiments is made publicly available. We determined that the LoG detector alone attained more than 84\% of accuracy with the F-measure. Developing immunogold recognition with TL also provided superior performance when compared with the baseline models augmenting the accuracy rates by 10\%
    • 

    corecore