1,979 research outputs found

    A NOVEL AND HYBRID WHALE OPTIMIZATION WITH RESTRICTED CROSSOVER AND MUTATION BASED FEATURE SELECTION METHOD FOR ANXIETY AND DEPRESSION

    Get PDF
    Introduction: Anxiety and depression are two leading human psychological disorders. In this work, several swarm intelligence- based metaheuristic techniques have been employed to find an optimal feature set for the diagnosis of these two human psychological disorders. Subjects and Methods: To diagnose depression and anxiety among people, a random dataset comprising 1128 instances and 46 attributes has been considered and examined. The dataset was collected and compiled manually by visiting the number of clinics situated in different cities of Haryana (one of the states of India). Afterwards, nine emerging meta-heuristic techniques (Genetic algorithm, binary Grey Wolf Optimizer, Ant Colony Optimization, Particle Swarm Optimization, Artificial Bee Colony, Firefly Algorithm, Dragonfly Algorithm, Bat Algorithm and Whale Optimization Algorithm) have been employed to find the optimal feature set used to diagnose depression and anxiety among humans. To avoid local optima and to maintain the balance between exploration and exploitation, a new hybrid feature selection technique called Restricted Crossover Mutation based Whale Optimization Algorithm (RCM-WOA) has been designed. Results: The swarm intelligence-based meta-heuristic algorithms have been applied to the datasets. The performance of these algorithms has been evaluated using different performance metrics such as accuracy, sensitivity, specificity, precision, recall, f-measure, error rate, execution time and convergence curve. The rate of accuracy reached utilizing the proposed method RCM-WOA is 91.4%. Conclusion: Depression and Anxiety are two critical psychological disorders that may lead to other chronic and life-threatening human disorders. The proposed algorithm (RCM-WOA) was found to be more suitable compared to the other state of art methods

    Applications of Nature-Inspired Algorithms for Dimension Reduction: Enabling Efficient Data Analytics

    Get PDF
    In [1], we have explored the theoretical aspects of feature selection and evolutionary algorithms. In this chapter, we focus on optimization algorithms for enhancing data analytic process, i.e., we propose to explore applications of nature-inspired algorithms in data science. Feature selection optimization is a hybrid approach leveraging feature selection techniques and evolutionary algorithms process to optimize the selected features. Prior works solve this problem iteratively to converge to an optimal feature subset. Feature selection optimization is a non-specific domain approach. Data scientists mainly attempt to find an advanced way to analyze data n with high computational efficiency and low time complexity, leading to efficient data analytics. Thus, by increasing generated/measured/sensed data from various sources, analysis, manipulation and illustration of data grow exponentially. Due to the large scale data sets, Curse of dimensionality (CoD) is one of the NP-hard problems in data science. Hence, several efforts have been focused on leveraging evolutionary algorithms (EAs) to address the complex issues in large scale data analytics problems. Dimension reduction, together with EAs, lends itself to solve CoD and solve complex problems, in terms of time complexity, efficiently. In this chapter, we first provide a brief overview of previous studies that focused on solving CoD using feature extraction optimization process. We then discuss practical examples of research studies are successfully tackled some application domains, such as image processing, sentiment analysis, network traffics / anomalies analysis, credit score analysis and other benchmark functions/data sets analysis

    An Improved Binary Grey-Wolf Optimizer with Simulated Annealing for Feature Selection

    Get PDF
    This paper proposes improvements to the binary grey-wolf optimizer (BGWO) to solve the feature selection (FS) problem associated with high data dimensionality, irrelevant, noisy, and redundant data that will then allow machine learning algorithms to attain better classification/clustering accuracy in less training time. We propose three variants of BGWO in addition to the standard variant, applying different transfer functions to tackle the FS problem. Because BGWO generates continuous values and FS needs discrete values, a number of V-shaped, S-shaped, and U-shaped transfer functions were investigated for incorporation with BGWO to convert their continuous values to binary. After investigation, we note that the performance of BGWO is affected by the selection of the transfer function. Then, in the first variant, we look to reduce the local minima problem by integrating an exploration capability to update the position of the grey wolf randomly within the search space with a certain probability; this variant was abbreviated as IBGWO. Consequently, a novel mutation strategy is proposed to select a number of the worst grey wolves in the population which are updated toward the best solution and randomly within the search space based on a certain probability to determine if the update is either toward the best or randomly. The number of the worst grey wolf selected by this strategy is linearly increased with the iteration. Finally, this strategy is combined with IBGWO to produce the second variant of BGWO that was abbreviated as LIBGWO. In the last variant, simulated annealing (SA) was integrated with LIBGWO to search around the best-so-far solution at the end of each iteration in order to identify better solutions. The performance of the proposed variants was validated on 32 datasets taken from the UCI repository and compared with six wrapper feature selection methods. The experiments show the superiority of the proposed improved variants in producing better classification accuracy than the other selected wrapper feature selection algorithms

    Improved Reptile Search Optimization Algorithm using Chaotic map and Simulated Annealing for Feature Selection in Medical Filed

    Get PDF
    The increased volume of medical datasets has produced high dimensional features, negatively affecting machine learning (ML) classifiers. In ML, the feature selection process is fundamental for selecting the most relevant features and reducing redundant and irrelevant ones. The optimization algorithms demonstrate its capability to solve feature selection problems. Reptile Search Algorithm (RSA) is a new nature-inspired optimization algorithm that stimulates Crocodiles’ encircling and hunting behavior. The unique search of the RSA algorithm obtains promising results compared to other optimization algorithms. However, when applied to high-dimensional feature selection problems, RSA suffers from population diversity and local optima limitations. An improved metaheuristic optimizer, namely the Improved Reptile Search Algorithm (IRSA), is proposed to overcome these limitations and adapt the RSA to solve the feature selection problem. Two main improvements adding value to the standard RSA; the first improvement is to apply the chaos theory at the initialization phase of RSA to enhance its exploration capabilities in the search space. The second improvement is to combine the Simulated Annealing (SA) algorithm with the exploitation search to avoid the local optima problem. The IRSA performance was evaluated over 20 medical benchmark datasets from the UCI machine learning repository. Also, IRSA is compared with the standard RSA and state-of-the-art optimization algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Grasshopper Optimization algorithm (GOA) and Slime Mould Optimization (SMO). The evaluation metrics include the number of selected features, classification accuracy, fitness value, Wilcoxon statistical test (p-value), and convergence curve. Based on the results obtained, IRSA confirmed its superiority over the original RSA algorithm and other optimized algorithms on the majority of the medical datasets

    A Hybrid Metaheuristics based technique for Mutation Based Disease Classification

    Get PDF
    Due to recent advancements in computational biology, DNA microarray technology has evolved as a useful tool in the detection of mutation among various complex diseases like cancer. The availability of thousands of microarray datasets makes this field an active area of research. Early cancer detection can reduce the mortality rate and the treatment cost. Cancer classification is a process to provide a detailed overview of the disease microenvironment for better diagnosis. However, the gene microarray datasets suffer from a curse of dimensionality problems also the classification models are prone to be overfitted due to small sample size and large feature space. To address these issues, the authors have proposed an Improved Binary Competitive Swarm Optimization Whale Optimization Algorithm (IBCSOWOA) for cancer classification, in which IBCSO has been employed to reduce the informative gene subset originated from using minimum redundancy maximum relevance (mRMR) as filter method. The IBCSOWOA technique has been tested on an artificial neural network (ANN) model and the whale optimization algorithm (WOA) is used for parameter tuning of the model. The performance of the proposed IBCSOWOA is tested on six different mutation-based microarray datasets and compared with existing disease prediction methods. The experimental results indicate the superiority of the proposed technique over the existing nature-inspired methods in terms of optimal feature subset, classification accuracy, and convergence rate. The proposed technique has illustrated above 98% accuracy in all six datasets with the highest accuracy of 99.45% in the Lung cancer dataset

    A Survey of Feature Selection Strategies for DNA Microarray Classification

    Get PDF
    Classification tasks are difficult and challenging in the bioinformatics field, that used to predict or diagnose patients at an early stage of disease by utilizing DNA microarray technology. However, crucial characteristics of DNA microarray technology are a large number of features and small sample sizes, which means the technology confronts a "dimensional curse" in its classification tasks because of the high computational execution needed and the discovery of biomarkers difficult. To reduce the dimensionality of features to find the significant features that can employ feature selection algorithms and not affect the performance of classification tasks. Feature selection helps decrease computational time by removing irrelevant and redundant features from the data. The study aims to briefly survey popular feature selection methods for classifying DNA microarray technology, such as filters, wrappers, embedded, and hybrid approaches. Furthermore, this study describes the steps of the feature selection process used to accomplish classification tasks and their relationships to other components such as datasets, cross-validation, and classifier algorithms. In the case study, we chose four different methods of feature selection on two-DNA microarray datasets to evaluate and discuss their performances, namely classification accuracy, stability, and the subset size of selected features. Keywords: Brief survey; DNA microarray data; feature selection; filter methods; wrapper methods; embedded methods; and hybrid methods. DOI: 10.7176/CEIS/14-2-01 Publication date:March 31st 202
    corecore