2,978 research outputs found

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    Device-free indoor localisation with non-wireless sensing techniques : a thesis by publications presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Electronics and Computer Engineering, Massey University, Albany, New Zealand

    Get PDF
    Global Navigation Satellite Systems provide accurate and reliable outdoor positioning to support a large number of applications across many sectors. Unfortunately, such systems do not operate reliably inside buildings due to the signal degradation caused by the absence of a clear line of sight with the satellites. The past two decades have therefore seen intensive research into the development of Indoor Positioning System (IPS). While considerable progress has been made in the indoor localisation discipline, there is still no widely adopted solution. The proliferation of Internet of Things (IoT) devices within the modern built environment provides an opportunity to localise human subjects by utilising such ubiquitous networked devices. This thesis presents the development, implementation and evaluation of several passive indoor positioning systems using ambient Visible Light Positioning (VLP), capacitive-flooring, and thermopile sensors (low-resolution thermal cameras). These systems position the human subject in a device-free manner (i.e., the subject is not required to be instrumented). The developed systems improve upon the state-of-the-art solutions by offering superior position accuracy whilst also using more robust and generalised test setups. The developed passive VLP system is one of the first reported solutions making use of ambient light to position a moving human subject. The capacitive-floor based system improves upon the accuracy of existing flooring solutions as well as demonstrates the potential for automated fall detection. The system also requires very little calibration, i.e., variations of the environment or subject have very little impact upon it. The thermopile positioning system is also shown to be robust to changes in the environment and subjects. Improvements are made over the current literature by testing across multiple environments and subjects whilst using a robust ground truth system. Finally, advanced machine learning methods were implemented and benchmarked against a thermopile dataset which has been made available for other researchers to use

    The assessment and development of methods in (spatial) sound ecology

    Get PDF
    As vital ecosystems across the globe enter unchartered pressure from climate change industrial land use, understanding the processes driving ecosystem viability has never been more critical. Nuanced ecosystem understanding comes from well-collected field data and a wealth of associated interpretations. In recent years the most popular methods of ecosystem monitoring have revolutionised from often damaging and labour-intensive manual data collection to automated methods of data collection and analysis. Sound ecology describes the school of research that uses information transmitted through sound to infer properties about an area's species, biodiversity, and health. In this thesis, we explore and develop state-of-the-art automated monitoring with sound, specifically relating to data storage practice and spatial acoustic recording and data analysis. In the first chapter, we explore the necessity and methods of ecosystem monitoring, focusing on acoustic monitoring, later exploring how and why sound is recorded and the current state-of-the-art in acoustic monitoring. Chapter one concludes with us setting out the aims and overall content of the following chapters. We begin the second chapter by exploring methods used to mitigate data storage expense, a widespread issue as automated methods quickly amass vast amounts of data which can be expensive and impractical to manage. Importantly I explain how these data management practices are often used without known consequence, something I then address. Specifically, I present evidence that the most used data reduction methods (namely compression and temporal subsetting) have a surprisingly small impact on the information content of recorded sound compared to the method of analysis. This work also adds to the increasing evidence that deep learning-based methods of environmental sound quantification are more powerful and robust to experimental variation than more traditional acoustic indices. In the latter chapters, I focus on using multichannel acoustic recording for sound-source localisation. Knowing where a sound originated has a range of ecological uses, including counting individuals, locating threats, and monitoring habitat use. While an exciting application of acoustic technology, spatial acoustics has had minimal uptake owing to the expense, impracticality and inaccessibility of equipment. In my third chapter, I introduce MAARU (Multichannel Acoustic Autonomous Recording Unit), a low-cost, easy-to-use and accessible solution to this problem. I explain the software and hardware necessary for spatial recording and show how MAARU can be used to localise the direction of a sound to within ±10˚ accurately. In the fourth chapter, I explore how MAARU devices deployed in the field can be used for enhanced ecosystem monitoring by spatially clustering individuals by calling directions for more accurate abundance approximations and crude species-specific habitat usage monitoring. Most literature on spatial acoustics cites the need for many accurately synced recording devices over an area. This chapter provides the first evidence of advances made with just one recorder. Finally, I conclude this thesis by restating my aims and discussing my success in achieving them. Specifically, in the thesis’ conclusion, I reiterate the contributions made to the field as a direct result of this work and outline some possible development avenues.Open Acces

    In-situ health monitoring for wind turbine blade using acoustic wireless sensor networks at low sampling rates

    Get PDF
    PhD ThesisThe development of in-situ structural health monitoring (SHM) techniques represents a challenge for offshore wind turbines (OWTs) in order to reduce the cost of the operation and maintenance (O&M) of safety-critical components and systems. This thesis propos- es an in-situ wireless SHM system based on acoustic emission (AE) techniques. The proposed wireless system of AE sensor networks is not without its own challenges amongst which are requirements of high sampling rates, limitations in the communication bandwidth, memory space, and power resources. This work is part of the HEMOW- FP7 Project, ‘The Health Monitoring of Offshore Wind Farms’. The present study investigates solutions relevant to the abovementioned challenges. Two related topics have been considered: to implement a novel in-situ wireless SHM technique for wind turbine blades (WTBs); and to develop an appropriate signal pro- cessing algorithm to detect, localise, and classify different AE events. The major contri- butions of this study can be summarised as follows: 1) investigating the possibility of employing low sampling rates lower than the Nyquist rate in the data acquisition opera- tion and content-based feature (envelope and time-frequency data analysis) for data analysis; 2) proposing techniques to overcome drawbacks associated with lowering sampling rates, such as information loss and low spatial resolution; 3) showing that the time-frequency domain is an effective domain for analysing the aliased signals, and an envelope-based wavelet transform cross-correlation algorithm, developed in the course of this study, can enhance the estimation accuracy of wireless acoustic source localisa- tion; 4) investigating the implementation of a novel in-situ wireless SHM technique with field deployment on the WTB structure, and developing a constraint model and approaches for localisation of AE sources and environmental monitoring respectively. Finally, the system has been experimentally evaluated with the consideration of the lo- calisation and classification of different AE events as well as changes of environmental conditions. The study concludes that the in-situ wireless SHM platform developed in the course of this research represents a promising technique for reliable SHM for OWTBs in which solutions for major challenges, e.g., employing low sampling rates lower than the Nyquist rate in the acquisition operation and resource constraints of WSNs in terms of communication bandwidth and memory space are presente

    Audio localization for mobile robots

    Get PDF
    The department of the University for which I worked is developing a project based on the interaction with robots in the environment. My work was to define an audio system for the robot. This audio system that I have to realize consists on a mobile head which is able to follow the sound in its environment. This subject was treated as a research problem, with the liberty to find and develop different solutions and make them evolve in the chosen way.Preprin

    Sonic interactions in virtual environments

    Get PDF
    This book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Sonic Interactions in Virtual Environments

    Get PDF
    • …
    corecore