15 research outputs found

    A polar codes-based distributed UEP scheme for the internet of things

    Get PDF
    The Internet of Things (IoT), which is expected to support a massive number of devices, is a promising communication scenario. Usually, the data of different devices has different reliability requirements. Channel codes with the unequal error protection (UEP) property are rather appealing for such applications. Due to the power-constrained characteristic of the IoT services, most of the data has short packets; therefore, channel codes are of short lengths. Consequently, how to transmit such nonuniform data from multisources efficiently and reliably becomes an issue be solved urgently. To address this issue, in this paper, a distributed coding scheme based on polar codes which can provide UEP property is proposed. The distributed polar codes are realized by the groundbreaking combination method of noisy coded bits. With the proposed coding scheme, the various data from multisources can be recovered with a single common decoder. Various reliability can be achieved; thus, UEP is provided. Finally, the simulation results show that the proposed coding scheme is viable

    Enhanced Rateless Coding and Compressive Sensing for Efficient Data/multimedia Transmission and Storage in Ad-hoc and Sensor Networks

    Get PDF
    In this dissertation, we investigate the theory and applications of the novel class of FEC codes called rateless or fountain codes in video transmission and wireless sensor networks (WSN). First, we investigate the rateless codes in intermediate region where the number of received encoded symbols is less that minimum required for full datablock decoding. We devise techniques to improve the input symbol recovery rate when the erasure rate is unknown, and also for the case where an estimate of the channel erasure rate is available. Further, we design unequal error protection (UEP) rateless codes for distributed data collection of data blocks of unequal lengths, where two encoders send their rateless coded output symbols to a destination through a common relay. We design such distributed rateless codes, and jointly optimize rateless coding parameters at each nodes and relaying parameters. Moreover, we investigate the performance of rateless codes with finite block length in the presence of feedback channel. We propose a smart feedback generation technique that greatly improves the performance of rateless codes when data block is finite. Moreover, we investigate the applications of UEP-rateless codes in video transmission systems. Next, we study the optimal cross-layer design of a video transmission system with rateless coding at application layer and fixed-rate coding (RCPC coding) at physical layer. Finally, we review the emerging compressive sensing (CS) techniques that have close connections to FEC coding theory, and designed an efficient data storage algorithm for WSNs employing CS referred to by CStorage. First, we propose to employ probabilistic broadcasting (PB) to form one CS measurement at each node and design CStorage- P. Later, we can query any arbitrary small subset of nodes and recover all sensors reading. Next, we design a novel parameterless and more efficient data dissemination algorithm that uses two-hop neighbor information referred to alternating branches (AB).We replace PB with AB and design CStorage-B, which results in a lower number of transmissions compared to CStorage-P.Electrical Engineerin

    Design Of Fountain Codes With Error Control

    Get PDF
    This thesis is focused on providing unequal error protection (uep) to two disjoint sources which are communicating to a comdestination via a comrelay by using distributed lt codes over a binary erasure channel (bec), and designing fountain codes with error control property by integrating lt codes with turbo codes over a binary input additive white gaussian noise (bi-awgn) channel. A simple yet efficient technique for decomposing the rsd into two entirely different degree distributions is developed and presented in this thesis. These two distributions are used to encode data symbols at the sources and the encoded symbols from the sources are selectively xored at the relay based on a suitable relay operation before the combined codeword is transmitted to the destination. By doing so, it is shown that the uep can be provided to these sources. The performance of lt codes over the awgn channel is well studied and presented in this thesis which indicates that these codes have weak error correction ability over the channel. But, errors introduced into individual symbols during the transmission of information over noisy channels need correction by some error correcting codes. Since it is found that lt codes alone are weak at correcting those errors, lt codes are integrated with turbo codes which are good error correcting codes. Therefore, the source data (symbols) are at first turbo encoded and then lt encoded and transmitted over the awgn channel. When the corrupted encoded symbols are received at receiver, lt decoding is conducted folloby turbo decoding. The overall performance of the integrated system is studied and presented in this thesis, which suggests that the errors left after lt decoding can be corrected to some extent by turbo decoder

    Error resilient stereoscopic video streaming using model-based fountain codes

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Science of Bilkent University, 2009.Thesis (Ph.D.) -- Bilkent University, 2009.Includes bibliographical references leaves 101-110.Error resilient digital video streaming has been a challenging problem since the introduction and deployment of early packet switched networks. One of the most recent advances in video coding is observed on multi-view video coding which suggests methods for the compression of correlated multiple image sequences. The existing multi-view compression techniques increase the loss sensitivity and necessitate the use of efficient loss recovery schemes. Forward Error Correction (FEC) is an efficient, powerful and practical tool for the recovery of lost data. A novel class of FEC codes is Fountain codes which are suitable to be used with recent video codecs, such as H.264/AVC, and LT and Raptor codes are practical examples of this class. Although there are many studies on monoscopic video, transmission of multi-view video through lossy channels with FEC have not been explored yet. Aiming at this deficiency, an H.264-based multi-view video codec and a model-based Fountain code are combined to generate an effi- cient error resilient stereoscopic streaming system. Three layers of stereoscopic video with unequal importance are defined in order to exploit the benefits of Unequal Error Protection (UEP) with FEC. Simply, these layers correspond to intra frames of left view, predicted frames of left view and predicted frames of right view. The Rate-Distortion (RD) characteristics of these dependent layers are de- fined by extending the RD characteristics of monoscopic video. The parameters of the models are obtained with curve fitting using the RD samples of the video, and satisfactory results are achieved where the average difference between the analytical models and RD samples is between 1.00% and 9.19%. An heuristic analytical model of the performance of Raptor codes is used to obtain the residual number of lost packets for given channel bit rate, loss rate, and protection rate. This residual number is multiplied with the estimated average distortion of the loss of a single Network Abstraction Layer (NAL) unit to obtain the total transmission distortion. All these models are combined to minimize the end-toend distortion and obtain optimal encoder bit rates and UEP rates. When the proposed system is used, the simulation results demonstrate up to 2dB increase in quality compared to equal error protection and only left view error protection. Furthermore, Fountain codes are analyzed in the finite length region, and iterative performance models are derived without any assumptions or asymptotical approximations. The performance model of the belief-propagation (BP) decoder approximates either the behavior of a single simulation results or their average depending on the parameters of the LT code. The performance model of the maximum likelihood decoder approximates the average of simulation results more accurately compared to the model of the BP decoder. Raptor codes are modeled heuristically based on the exponential decay observed on the simulation results, and the model parameters are obtained by line of best fit. The analytical models of systematic and non-systematic Raptor codes accurately approximate the experimental average performance.Tan, A SerdarPh.D

    Scalable Video Streaming with Prioritised Network Coding on End-System Overlays

    Get PDF
    PhDDistribution over the internet is destined to become a standard approach for live broadcasting of TV or events of nation-wide interest. The demand for high-quality live video with personal requirements is destined to grow exponentially over the next few years. Endsystem multicast is a desirable option for relieving the content server from bandwidth bottlenecks and computational load by allowing decentralised allocation of resources to the users and distributed service management. Network coding provides innovative solutions for a multitude of issues related to multi-user content distribution, such as the coupon-collection problem, allocation and scheduling procedure. This thesis tackles the problem of streaming scalable video on end-system multicast overlays with prioritised push-based streaming. We analyse the characteristic arising from a random coding process as a linear channel operator, and present a novel error detection and correction system for error-resilient decoding, providing one of the first practical frameworks for Joint Source-Channel-Network coding. Our system outperforms both network error correction and traditional FEC coding when performed separately. We then present a content distribution system based on endsystem multicast. Our data exchange protocol makes use of network coding as a way to collaboratively deliver data to several peers. Prioritised streaming is performed by means of hierarchical network coding and a dynamic chunk selection for optimised rate allocation based on goodput statistics at application layer. We prove, by simulated experiments, the efficient allocation of resources for adaptive video delivery. Finally we describe the implementation of our coding system. We highlighting the use rateless coding properties, discuss the application in collaborative and distributed coding systems, and provide an optimised implementation of the decoding algorithm with advanced CPU instructions. We analyse computational load and packet loss protection via lab tests and simulations, complementing the overall analysis of the video streaming system in all its components

    Joint Redundant and Random Network Coding for Robust Video Transmission over Lossy Networks

    Get PDF

    On feedback-based rateless codes for data collection in vehicular networks

    Full text link
    The ability to transfer data reliably and with low delay over an unreliable service is intrinsic to a number of emerging technologies, including digital video broadcasting, over-the-air software updates, public/private cloud storage, and, recently, wireless vehicular networks. In particular, modern vehicles incorporate tens of sensors to provide vital sensor information to electronic control units (ECUs). In the current architecture, vehicle sensors are connected to ECUs via physical wires, which increase the cost, weight and maintenance effort of the car, especially as the number of electronic components keeps increasing. To mitigate the issues with physical wires, wireless sensor networks (WSN) have been contemplated for replacing the current wires with wireless links, making modern cars cheaper, lighter, and more efficient. However, the ability to reliably communicate with the ECUs is complicated by the dynamic channel properties that the car experiences as it travels through areas with different radio interference patterns, such as urban versus highway driving, or even different road quality, which may physically perturb the wireless sensors. This thesis develops a suite of reliable and efficient communication schemes built upon feedback-based rateless codes, and with a target application of vehicular networks. In particular, we first investigate the feasibility of multi-hop networking for intra-car WSN, and illustrate the potential gains of using the Collection Tree Protocol (CTP), the current state of the art in multi-hop data aggregation. Our results demonstrate, for example, that the packet delivery rate of a node using a single-hop topology protocol can be below 80% in practical scenarios, whereas CTP improves reliability performance beyond 95% across all nodes while simultaneously reducing radio energy consumption. Next, in order to migrate from a wired intra-car network to a wireless system, we consider an intermediate step to deploy a hybrid communication structure, wherein wired and wireless networks coexist. Towards this goal, we design a hybrid link scheduling algorithm that guarantees reliability and robustness under harsh vehicular environments. We further enhance the hybrid link scheduler with the rateless codes such that information leakage to an eavesdropper is almost zero for finite block lengths. In addition to reliability, one key requirement for coded communication schemes is to achieve a fast decoding rate. This feature is vital in a wide spectrum of communication systems, including multimedia and streaming applications (possibly inside vehicles) with real-time playback requirements, and delay-sensitive services, where the receiver needs to recover some data symbols before the recovery of entire frame. To address this issue, we develop feedback-based rateless codes with dynamically-adjusted nonuniform symbol selection distributions. Our simulation results, backed by analysis, show that feedback information paired with a nonuniform distribution significantly improves the decoding rate compared with the state of the art algorithms. We further demonstrate that amount of feedback sent can be tuned to the specific transmission properties of a given feedback channel

    Collaborative HARQ Schemes for Cooperative Diversity Communications in Wireless Networks

    Get PDF
    Wireless technology is experiencing spectacular developments, due to the emergence of interactive and digital multimedia applications as well as rapid advances in the highly integrated systems. For the next-generation mobile communication systems, one can expect wireless connectivity between any devices at any time and anywhere with a range of multimedia contents. A key requirement in such systems is the availability of high-speed and robust communication links. Unfortunately, communications over wireless channels inherently suffer from a number of fundamental physical limitations, such as multipath fading, scarce radio spectrum, and limited battery power supply for mobile devices. Cooperative diversity (CD) technology is a promising solution for future wireless communication systems to achieve broader coverage and to mitigate wireless channels’ impairments without the need to use high power at the transmitter. In general, cooperative relaying systems have a source node multicasting a message to a number of cooperative relays, which in turn resend a processed version message to an intended destination node. The destination node combines the signal received from the relays, and takes into account the source’s original signal to decode the message. The CD communication systems exploit two fundamental features of the wireless medium: its broadcast nature and its ability to achieve diversity through independent channels. A variety of relaying protocols have been considered and utilized in cooperative wireless networks. Amplify and forward (AAF) and decode and forward (DAF) are two popular protocols, frequently used in the cooperative systems. In the AAF mode, the relay amplifies the received signal prior to retransmission. In the DAF mode, the relay fully decodes the received signal, re-encodes and forwards it to the destination. Due to the retransmission without decoding, AAF has the shortcoming that noise accumulated in the received signal is amplified at the transmission. DAF suffers from decoding errors that can lead to severe error propagation. To further enhance the quality of service (QoS) of CD communication systems, hybrid Automatic Repeat-reQuest (HARQ) protocols have been proposed. Thus, if the destination requires an ARQ retransmission, it could come from one of relays rather than the source node. This thesis proposes an improved HARQ scheme with an adaptive relaying protocol (ARP). Focusing on the HARQ as a central theme, we start by introducing the concept of ARP. Then we use it as the basis for designing three types of HARQ schemes, denoted by HARQ I-ARP, HARQ II-ARP and HARQ III-ARP. We describe the relaying protocols, (both AAF and DAF), and their operations, including channel access between the source and relay, the feedback scheme, and the combining methods at the receivers. To investigate the benefits of the proposed HARQ scheme, we analyze its frame error rate (FER) and throughput performance over a quasi-static fading channel. We can compare these with the reference methods, HARQ with AAF (HARQ-AAF) and HARQ with perfect distributed turbo codes (DTC), for which correct decoding is always assumed at the relay (HARQ-perfect DTC). It is shown that the proposed HARQ-ARP scheme can always performs better than the HARQ-AAF scheme. As the signal-to-noise ratio (SNR) of the channel between the source and relay increases, the performance of the proposed HARQ-ARP scheme approaches that of the HARQ-perfect DTC scheme

    Network-coded NOMA with antenna selection for the support of two heterogeneous groups of users

    Get PDF
    The combination of Non-Orthogonal Multiple Access (NOMA) and Transmit Antenna Selection (TAS) techniques has recently attracted significant attention due to the low cost, low complexity and high diversity gains. Meanwhile, Random Linear Coding (RLC) is considered to be a promising technique for achieving high reliability and low latency in multicast communications. In this paper, we consider a downlink system with a multi-antenna base station and two multicast groups of single-antenna users, where one group can afford to be served opportunistically, while the other group consists of comparatively low power devices with limited processing capabilities that have strict Quality of Service (QoS) requirements. In order to boost reliability and satisfy the QoS requirements of the multicast groups, we propose a cross-layer framework including NOMAbased TAS at the physical layer and RLC at the application layer. In particular, two low complexity TAS protocols for NOMA are studied in order to exploit the diversity gain and meet the QoS requirements. In addition, RLC analysis aims to facilitate heterogeneous users, such that, sliding window based sparse RLC is employed for computational restricted users, and conventional RLC is considered for others. Theoretical expressions that characterize the performance of the proposed framework are derived and verified through simulation results
    corecore