2,102 research outputs found

    A Framework for Uncertain Cloud Data Security and Recovery Based on Hybrid Multi-User Medical Decision Learning Patterns

    Get PDF
    Machine learning has been supporting real-time cloud based medical computing systems. However, most of the computing servers are independent of data security and recovery scheme in multiple virtual machines due to high computing cost and time. Also, this cloud based medical applications require static security parameters for cloud data security. Cloud based medical applications require multiple servers to store medical records or machine learning patterns for decision making. Due to high Uncertain computational memory and time, these cloud systems require an efficient data security framework to provide strong data access control among the multiple users. In this work, a hybrid cloud data security framework is developed to improve the data security on the large machine learning patterns in real-time cloud computing environment. This work is implemented in two phases’ i.e. data replication phase and multi-user data access security phase. Initially, machine decision patterns are replicated among the multiple servers for Uncertain data recovering phase. In the multi-access cloud data security framework, a hybrid multi-access key based data encryption and decryption model is implemented on the large machine learning medical patterns for data recovery and security process. Experimental results proved that the present two-phase data recovering, and security framework has better computational efficiency than the conventional approaches on large medical decision patterns

    Integrated mining of feature spaces for bioinformatics domain discovery

    Get PDF
    One of the major challenges in the field of bioinformatics is the elucidation of protein folding for the functional annotation of proteins. The factors that govern protein folding include the chemical, physical, and environmental conditions of the protein\u27s surroundings, which can be measured and exploited for computational discovery purposes. These conditions enable the protein to transform from a sequence of amino acids to a globular three-dimensional structure. Information concerning the folded state of a protein has significant potential to explain biochemical pathways and their involvement in disorders and diseases. This information impacts the ways in which genetic diseases are characterized and cured and in which designer drugs are created. With the exponential growth of protein databases and the limitations of experimental protein structure determination, sophisticated computational methods have been developed and applied to search for, detect, and compare protein homology. Most computational tools developed for protein structure prediction are primarily based on sequence similarity searches. These approaches have improved the prediction accuracy of high sequence similarity proteins but have failed to perform well with proteins of low sequence similarity. Data mining offers unique algorithmic computational approaches that have been used widely in the development of automatic protein structure classification and prediction. In this dissertation, we present a novel approach for the integration of physico-chemical properties and effective feature extraction techniques for the classification of proteins. Our approaches overcome one of the major obstacles of data mining in protein databases, the encapsulation of different hydrophobicity residue properties into a much reduced feature space that possess high degrees of specificity and sensitivity in protein structure classification. We have developed three unique computational algorithms for coherent feature extraction on selected scale properties of the protein sequence. When plagued by the problem of the unequal cardinality of proteins, our proposed integration scheme effectively handles the varied sizes of proteins and scales well with increasing dimensionality of these sequences. We also detail a two-fold methodology for protein functional annotation. First, we exhibit our success in creating an algorithm that provides a means to integrate multiple physico-chemical properties in the form of a multi-layered abstract feature space, with each layer corresponding to a physico-chemical property. Second, we discuss a wavelet-based segmentation approach that efficiently detects regions of property conservation across all layers of the created feature space. Finally, we present a unique graph-theory based algorithmic framework for the identification of conserved hydrophobic residue interaction patterns using identified scales of hydrophobicity. We report that these discriminatory features are specific to a family of proteins, which consist of conserved hydrophobic residues that are then used for structural classification. We also present our rigorously tested validation schemes, which report significant degrees of accuracy to show that homologous proteins exhibit the conservation of physico-chemical properties along the protein backbone. We conclude our discussion by summarizing our results and contributions and by listing our goals for future research

    VLSI architectures for public key cryptology

    Get PDF

    Privacy-preserving information hiding and its applications

    Get PDF
    The phenomenal advances in cloud computing technology have raised concerns about data privacy. Aided by the modern cryptographic techniques such as homomorphic encryption, it has become possible to carry out computations in the encrypted domain and process data without compromising information privacy. In this thesis, we study various classes of privacy-preserving information hiding schemes and their real-world applications for cyber security, cloud computing, Internet of things, etc. Data breach is recognised as one of the most dreadful cyber security threats in which private data is copied, transmitted, viewed, stolen or used by unauthorised parties. Although encryption can obfuscate private information against unauthorised viewing, it may not stop data from illegitimate exportation. Privacy-preserving Information hiding can serve as a potential solution to this issue in such a manner that a permission code is embedded into the encrypted data and can be detected when transmissions occur. Digital watermarking is a technique that has been used for a wide range of intriguing applications such as data authentication and ownership identification. However, some of the algorithms are proprietary intellectual properties and thus the availability to the general public is rather limited. A possible solution is to outsource the task of watermarking to an authorised cloud service provider, that has legitimate right to execute the algorithms as well as high computational capacity. Privacypreserving Information hiding is well suited to this scenario since it is operated in the encrypted domain and hence prevents private data from being collected by the cloud. Internet of things is a promising technology to healthcare industry. A common framework consists of wearable equipments for monitoring the health status of an individual, a local gateway device for aggregating the data, and a cloud server for storing and analysing the data. However, there are risks that an adversary may attempt to eavesdrop the wireless communication, attack the gateway device or even access to the cloud server. Hence, it is desirable to produce and encrypt the data simultaneously and incorporate secret sharing schemes to realise access control. Privacy-preserving secret sharing is a novel research for fulfilling this function. In summary, this thesis presents novel schemes and algorithms, including: • two privacy-preserving reversible information hiding schemes based upon symmetric cryptography using arithmetic of quadratic residues and lexicographic permutations, respectively. • two privacy-preserving reversible information hiding schemes based upon asymmetric cryptography using multiplicative and additive privacy homomorphisms, respectively. • four predictive models for assisting the removal of distortions inflicted by information hiding based respectively upon projection theorem, image gradient, total variation denoising, and Bayesian inference. • three privacy-preserving secret sharing algorithms with different levels of generality

    Alignment uncertainty, regressive alignment and large scale deployment

    Get PDF
    A multiple sequence alignment (MSA) provides a description of the relationship between biological sequences where columns represent a shared ancestry through an implied set of evolutionary events. The majority of research in the field has focused on improving the accuracy of alignments within the progressive alignment framework and has allowed for powerful inferences including phylogenetic reconstruction, homology modelling and disease prediction. Notwithstanding this, when applied to modern genomics datasets - often comprising tens of thousands of sequences - new challenges arise in the construction of accurate MSA. These issues can be generalised to form three basic problems. Foremost, as the number of sequences increases, progressive alignment methodologies exhibit a dramatic decrease in alignment accuracy. Additionally, for any given dataset many possible MSA solutions exist, a problem which is exacerbated with an increasing number of sequences due to alignment uncertainty. Finally, technical difficulties hamper the deployment of such genomic analysis workflows - especially in a reproducible manner - often presenting a high barrier for even skilled practitioners. This work aims to address this trifecta of problems through a web server for fast homology extension based MSA, two new methods for improved phylogenetic bootstrap supports incorporating alignment uncertainty, a novel alignment procedure that improves large scale alignments termed regressive MSA and finally a workflow framework that enables the deployment of large scale reproducible analyses across clusters and clouds titled Nextflow. Together, this work can be seen to provide both conceptual and technical advances which deliver substantial improvements to existing MSA methods and the resulting inferences.Un alineament de seqüència múltiple (MSA) proporciona una descripció de la relació entre seqüències biològiques on les columnes representen una ascendència compartida a través d'un conjunt implicat d'esdeveniments evolutius. La majoria de la investigació en el camp s'ha centrat a millorar la precisió dels alineaments dins del marc d'alineació progressiva i ha permès inferències poderoses, incloent-hi la reconstrucció filogenètica, el modelatge d'homologia i la predicció de malalties. Malgrat això, quan s'aplica als conjunts de dades de genòmica moderns, que sovint comprenen desenes de milers de seqüències, sorgeixen nous reptes en la construcció d'un MSA precís. Aquests problemes es poden generalitzar per formar tres problemes bàsics. En primer lloc, a mesura que augmenta el nombre de seqüències, les metodologies d'alineació progressiva presenten una disminució espectacular de la precisió de l'alineació. A més, per a un conjunt de dades, existeixen molts MSA com a possibles solucions un problema que s'agreuja amb un nombre creixent de seqüències a causa de la incertesa d'alineació. Finalment, les dificultats tècniques obstaculitzen el desplegament d'aquests fluxos de treball d'anàlisi genòmica, especialment de manera reproduïble, sovint presenten una gran barrera per als professionals fins i tot qualificats. Aquest treball té com a objectiu abordar aquesta trifecta de problemes a través d'un servidor web per a l'extensió ràpida d'homologia basada en MSA, dos nous mètodes per a la millora de l'arrencada filogenètica permeten incorporar incertesa d'alineació, un nou procediment d'alineació que millora els alineaments a gran escala anomenat MSA regressivu i, finalment, un marc de flux de treball permet el desplegament d'anàlisis reproduïbles a gran escala a través de clústers i computació al núvol anomenat Nextflow. En conjunt, es pot veure que aquest treball proporciona tant avanços conceptuals com tècniques que proporcionen millores substancials als mètodes MSA existents i les conseqüències resultants

    User-differentiated hierarchical key management for the bring-your-own-device environments

    Get PDF
    To ensure confidentiality, the sensitive electronic data held within a corporation is always carefully encrypted and stored in a manner so that it is inaccessible to those parties who are not involved. During this process, the specific manners of how to keep, distribute, use, and update keys which are used to encrypt the sensitive data become an important thing to be considered. Through use of hierarchical key management, a technique that provides access controls in multi-user systems where a portion of sensitive resources shall only be made available to authorized users or security ordinances, required information is distributed on a need-to-know basis. As a result of this hierarchical key management, time-bound hierarchical key management further adds time controls to the information access process. There is no existing hierarchical key management scheme or time-bound hierarchical key management scheme which is able to differentiate users with the same authority. When changes are required for any user, all other users who have the same access authorities will be similarly affected, and this deficiency then further deteriorates due to a recent trend which has been called Bring-Your-Own-Device. This thesis proposes the construction of a new time-bound hierarchical key management scheme called the User-Differentiated Two-Layer Encryption-Based Scheme (UDTLEBC), one which is designed to differentiate between users. With this differentiation, whenever any changes are required for one user during the processes of key management, no additional users will be affected during these changes and these changes can be done without interactions with the users. This new scheme is both proven to be secure as a time-bound hierarchical key management scheme and efficient for use in a BYOD environment
    • …
    corecore