3,621 research outputs found

    Contrastive Triple Extraction with Generative Transformer

    Full text link
    Triple extraction is an essential task in information extraction for natural language processing and knowledge graph construction. In this paper, we revisit the end-to-end triple extraction task for sequence generation. Since generative triple extraction may struggle to capture long-term dependencies and generate unfaithful triples, we introduce a novel model, contrastive triple extraction with a generative transformer. Specifically, we introduce a single shared transformer module for encoder-decoder-based generation. To generate faithful results, we propose a novel triplet contrastive training object. Moreover, we introduce two mechanisms to further improve model performance (i.e., batch-wise dynamic attention-masking and triple-wise calibration). Experimental results on three datasets (i.e., NYT, WebNLG, and MIE) show that our approach achieves better performance than that of baselines.Comment: Accepted by AAAI 202

    Text Classification

    Get PDF
    There is an abundance of text data in this world but most of it is raw. We need to extract information from this data to make use of it. One way to extract this information from raw text is to apply informative labels drawn from a pre-defined fixed set i.e. Text Classification. In this thesis, we focus on the general problem of text classification, and work towards solving challenges associated to binary/multi-class/multi-label classification. More specifically, we deal with the problem of (i) Zero-shot labels during testing; (ii) Active learning for text screening; (iii) Multi-label classification under low supervision; (iv) Structured label space; (v) Classifying pairs of words in raw text i.e. Relation Extraction. For (i), we use a zero-shot classification model that utilizes independently learned semantic embeddings. Regarding (ii), we propose a novel active learning algorithm that reduces problem of bias in naive active learning algorithms. For (iii), we propose neural candidate-selector architecture that starts from a set of high-recall candidate labels to obtain high-precision predictions. In the case of (iv), we proposed an attention based neural tree decoder that recursively decodes an abstract into the ontology tree. For (v), we propose using second-order relations that are derived by explicitly connecting pairs of words via context token(s) for improved relation extraction. We use a wide variety of both traditional and deep machine learning tools. More specifically, we used traditional machine learning models like multi-valued linear regression and logistic regression for (i, ii), deep convolutional neural networks for (iii), recurrent neural networks for (iv) and transformer networks for (v)

    SCRE:special cargo relation extraction using representation learning

    Get PDF
    The airfreight industry of shipping goods with special handling needs, also known as special cargo, often deals with non-transparent data and outdated technology, resulting in significant inefficiency. A special cargo ontology is a means of extracting, structuring, and storing domain knowledge and representing the concepts and relationships that can be processed by computers. This ontology can be used as the base of semantic data retrieval in many artificial intelligence applications, such as planning for special cargo shipments. Domain information extraction is an essential task in implementing and maintaining special cargo ontology. However, the absence of domain information makes instantiating the cargo ontology challenging. We propose a relation representation learning approach based on a hierarchical attention-based multi-task model and leverage it in the special cargo domain. The proposed relation representation learning architecture is applied for identifying and categorizing samples of various relation types in the special cargo ontology. The model is trained with domain-specific documents on a number of semantic tasks that vary from lightweight tasks in the bottom layers to the heavyweight tasks in the top layers of the model in a hierarchical setting. Therefore, it conveys complementary input features and learns a rich representation. We also train a domain-specific relation representation model that relies only on an entity-linked corpus of cargo shipment domain. These two relation representation models are then employed in a supervised multi-class classifier called Special Cargo Relation Extractor (SCRE). The results of the experiments show that the proposed relation representation models can represent the complex semantic information of the special cargo domain efficiently.</p
    corecore