40 research outputs found

    Hyperchaotic technology-based efficient image encryption algorithm an overview.

    Get PDF
    Multimedia data encryption is so crucial because the multimedia encryption algorithm needs more time and memory, and it is difficult to implement. Because of this, the hyperchaotic image encryption technique is becoming more and more popular, which uses little memory, time, or energy and offers the highest level of security for low-powered devices. This study offers a comprehensive overview of modern hyperchaotic systems. By focusing on these complex systems' uniqueness and fundamental features, a study of their dynamic behavior is offered. Such systems are now being used more and more in a variety of industries, including finance, secure communication, and encryption, for example. In reality, every field calls for particular performances of unusual complexity. This research then suggests a specific classification based on the crucial hyperchaotic characteristic, Lyapunov exponent, the equilibrium points, dynamical behavior, NPCR, and UACI.

    A new four-dimensional hyper-chaotic system for image encryption

    Get PDF
    Currently, images are very important with the rapid growth of communication networks. Therefore, image encryption is a process to provide security for private information and prevent unwanted access to sensitive data by unauthorized individuals. Chaos systems provide an important role for key generation, with high randomization properties and accurate performance. In this study, a new four-dimensional hyper-chaotic system has been suggested that is used in the keys generation, which are utilized in the image encryption process to achieve permutation and substitution operations. Firstly, color bands are permuted using the index of the chaotic sequences to remove the high correlation among neighboring pixels. Secondly, dynamic S-boxes achieve the principle of substitution, which are utilized to diffuse the pixel values of the color image. The efficiency of the proposed method is tested by the key space, histogram, and so on. Security analysis shows that the proposed method for encrypting images is secure and resistant to different attacks. It contains a big key space of (2627) and a high sensitivity to a slight change in the secret key, a fairly uniform histogram, and entropy values nearby to the best value of 8. Moreover, it consumes a very short time for encryption and decryption

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue

    CellSecure: Securing Image Data in Industrial Internet-of-Things via Cellular Automata and Chaos-Based Encryption

    Full text link
    In the era of Industrial IoT (IIoT) and Industry 4.0, ensuring secure data transmission has become a critical concern. Among other data types, images are widely transmitted and utilized across various IIoT applications, ranging from sensor-generated visual data and real-time remote monitoring to quality control in production lines. The encryption of these images is essential for maintaining operational integrity, data confidentiality, and seamless integration with analytics platforms. This paper addresses these critical concerns by proposing a robust image encryption algorithm tailored for IIoT and Cyber-Physical Systems (CPS). The algorithm combines Rule-30 cellular automata with chaotic scrambling and substitution. The Rule 30 cellular automata serves as an efficient mechanism for generating pseudo-random sequences that enable fast encryption and decryption cycles suitable for real-time sensor data in industrial settings. Most importantly, it induces non-linearity in the encryption algorithm. Furthermore, to increase the chaotic range and keyspace of the algorithm, which is vital for security in distributed industrial networks, a hybrid chaotic map, i.e., logistic-sine map is utilized. Extensive security analysis has been carried out to validate the efficacy of the proposed algorithm. Results indicate that our algorithm achieves close-to-ideal values, with an entropy of 7.99 and a correlation of 0.002. This enhances the algorithm's resilience against potential cyber-attacks in the industrial domain

    Hybrid chaos-based image encryption algorithm using Chebyshev chaotic map with deoxyribonucleic acid sequence and its performance evaluation

    Get PDF
    The media content shared on the internet has increased tremendously nowadays. The streaming service has major role in contributing to internet traffic all over the world. As the major content shared are in the form of images and rapid increase in computing power a better and complex encryption standard is needed to protect this data from being leaked to unauthorized person. Our proposed system makes use of chaotic maps, deoxyribonucleic acid (DNA) coding and ribonucleic acid (RNA) coding technique to encrypt the image. As videos are nothing but collection of images played at the rate of minimum 30 frames/images per second, this methodology can also be used to encrypt videos. The complexity and dynamic nature of chaotic systems makes decryption of content by unauthorized personal difficult. The hybrid usage of chaotic systems along with DNA and RNA sequencing improves the encryption efficiency of the algorithm and also makes it possible to decrypt the images at the same time without consuming too much of computation power

    Lightweight image encryption algorithms: design and evaluation

    Get PDF
    Doctor of PhilosophyDepartment of Computer ScienceArslan MunirIn an era dominated by increasing use of multimedia data such as images and videos, ensuring the security and confidentiality of images with real-time encryption is of greatest importance. Traditional encryption algorithms are secure, widely used, and recommended, yet they are not suitable nor computationally efficient for encrypting multimedia data due to the large size and high redundancy inherent in multimedia data. Thus, specialized algorithms for multimedia data encryption are needed. This dissertation explores lightweight image encryption algorithms, specifically designed to address time and resource constraints of realtime image encryption while maintaining the confidentiality and integrity of the multimedia data. The dissertation classifies image encryption based on the techniques used into seven different approaches and analyzes the strengths and weaknesses of each approach. It subsequently introduces and evaluates three novel algorithms designed to encrypt images with low complexity, high efficiency, and reliable security. These algorithms rely on a combination of permutation, substitution, and pseudorandom keystreams to ensure the security of the encrypted images. The first algorithm is based on chaotic systems. The algorithm is implemented using logistic map, permutations, AES S-box, and a plaintext related SHA-2 hash. The second algorithm is based on Trivium cipher. the algorithm is implemented to work on multi-rounds of encryption using pixel-based row and column permutations, and bit-level substitution. For the third algorithm, the Ascon algorithm selected by the National Institute of Standards and Technology (NIST) to standardize lightweight cryptography applications is evaluated for image encryption. To evaluate the proposed algorithms, a comprehensive set of security, quality, and efficiency valuation metrics is utilized to assess the proposed algorithms and compare them to contemporary image encryption algorithms

    Image hiding in audio file using chaotic method

    Get PDF
    In this paper, we propose an efficient image hiding method that combines image encryption and chaotic mapping to introduce adaptive data hiding for improving the security and robustness of image data hiding in cover audio. The feasibility of using chaotic maps to hide encrypted image in the high frequency band of the audio is investigated. The proposed method was based on hiding the image data in the noisiest part of the audio, which is the high frequency band that was extracted by the zero crossing filter. Six types of digital images were used, each of size fit the length of used audio, this to facilitate the process of hiding them among the audio samples. The input image was encrypted by a one-time pad method, then its bits were hidden in the audio by the chaotic map. The process of retrieving the image from the audio was in the opposite way, where the image data was extracted from the high frequency band of the audio file, and then the extracted image was decrypted to produce the retrieved image. Four qualitative metrics were used to evaluate the hiding method in two paths: the first depends on comparing the retrieved image with the original image, while the second depends on comparing the audio containing the image data with the original audio once, and another time by comparing the cover audio with the original audio. The results of the quality metrics proved the efficiency of the proposed method, and it showed a slight and unnoticed effect between the research materials, which indicates the success of the hiding process and the validity of the research path
    corecore