22 research outputs found

    Spiking Neural Networks: Modification and Digital Implementation

    Get PDF
    Real-time large-scale simulation of biological systems is a challenging task due to nonlinear functions describing biochemical reactions in the cells. Being fast, cost and power efficient alongside of capability to work in parallel have made hardware an attractive choice for simulation platform. This thesis proposes a neuromorphic platform for online Spike Timing Dependant Plasticity (STDP) learning, based on the COordinate Rotation DIgital Computer (CORDIC) algorithms. The implemented platform comprises two main components. First, the Izhikevich neuron model is modified for implementation using the CORDIC algorithm and simulated to ensure the model accuracy. Afterwards, the model was described as hardware and implemented on Field Programmable Gate Array (FPGA). Second, the STDP learning algorithm is adapted and optimized using the CORDIC method, synthesized for hardware, and implemented to perform on-FPGA online learning on a network of CORDIC Izhikevich neurons to demonstrate competitive Hebbian learning. The implementation results are compared with the original model and state-of-the-art to verify accuracy, effectiveness, and higher speed of the system. These comparisons confirm that the proposed neuromorphic system offers better performance and higher accuracy while being straightforward to implement and suitable to scale. New findings show that astrocytes are important parts of the information processing in brain and believed to be responsible for some brain diseases such as Alzheimer and Epilepsy. Astrocytes generate Ca2+^{2+} waves and release neuro-transmitters over a large area. To study astrcoytes, one need to simulate large number of biologically realistic models of these cells alongside neuron models. Software simulation is flexible but slow. This thesis proposes a high-speed and low-cost digital hardware to replicate biological-plausible astrocyte and glutamate release mechanism. The nonlinear terms of these models were calculated using high-precision and cost-efficient algorithms. Subsequently, the modified models were simulated to study and validate their functions. Several hardware were developed by setting different constraints to investigate trade-offs and achieve best possible design. As proof of concept, the design was implemented on a FPGA device. Hardware implementation results confirmed the ability of the design to replicate biological cells in detail with high accuracy. As for performance, the proposed design turned out to be far more faster and area efficient than previously published works that targeted digital hardware for biological-plausible astrocytes. Spiking neurons, the models that mimic the biological cells in the brain, are described using ordinary differential equations. A common method to numerically solve these equations is Euler\u27s method. An important factor that has a significant impact on the performance and cost of the hardware implementation or software simulation of spiking neural networks and yet its importance has been neglected in the published literature, is the time step in Euler\u27s method. In this thesis, first the Izhikevich neuron\u27s accuracy as a function of the time step was measured. It was uncovered that the threshold time step that Izhikevich neuron becomes unstable is an exponential function of the input current. Software simulation performance, including total computational time and memory usage were compared for different time steps. Afterwards, the model was synthesized and implemented on the FPGA. Hardware performance metrics such as speed, area and power consumption were measured for each time step. Results indicated that time step has a negative linear effect on the performance. It was concluded that by determining maximum input current to the neuron, larger time steps comparable to those used in the previous works could be employed

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche

    Simple and complex spiking neurons : perspectives and analysis in a simple STDP scenario

    Get PDF
    Spiking neural networks (SNNs) are largely inspired by biology and neuroscience, and leverage ideas and theories to create fast and efficient learning systems. Spiking neuron models are adopted as core processing units in neuromorphic systems because they enable event-based processing. The integrate-and-fire (I\&F) models are often adopted as considered more suitable, with the simple Leaky I\&F (LIF) being the most used. The reason for adopting such models is their efficiency or biological plausibility. Nevertheless, rigorous justification for the adoption of LIF over other neuron models for use in artificial learning systems has not yet been studied. This work considers a variety of neuron models in the literature and then selects computational neuron models that are single-variable, efficient, and display different types of complexities. From this selection, we make a comparative study of three simple I\&F neuron models, namely the LIF, the Quadratic I\&F (QIF) and the Exponential I\&F (EIF), to understand whether the use of more complex models increases the performance of the system and whether the choice of a neuron model can be directed by the task to be completed. Neuron models are tested within an SNN trained with Spike-Timing Dependent Plasticity (STDP) on a classification task on the N-MNIST and DVS Gestures datasets. Experimental results reveal that more complex neurons manifest the same ability as simpler ones to achieve high levels of accuracy on a simple dataset (N-MNIST), albeit requiring comparably more hyper-parameter tuning. However, when the data possess richer spatio-temporal features, the QIF and EIF neuron models steadily achieve better results. This suggests that accurately selecting the model based on the richness of the feature spectrum of the data could improve the performance of the whole system. Finally, the code implementing the spiking neurons in the SpykeTorch framework is made publicly available

    Digital control networks for virtual creatures

    Get PDF
    Robot control systems evolved with genetic algorithms traditionally take the form of floating-point neural network models. This thesis proposes that digital control systems, such as quantised neural networks and logical networks, may also be used for the task of robot control. The inspiration for this is the observation that the dynamics of discrete networks may contain cyclic attractors which generate rhythmic behaviour, and that rhythmic behaviour underlies the central pattern generators which drive lowlevel motor activity in the biological world. To investigate this a series of experiments were carried out in a simulated physically realistic 3D world. The performance of evolved controllers was evaluated on two well known control tasksā€”pole balancing, and locomotion of evolved morphologies. The performance of evolved digital controllers was compared to evolved floating-point neural networks. The results show that the digital implementations are competitive with floating-point designs on both of the benchmark problems. In addition, the first reported evolution from scratch of a biped walker is presented, demonstrating that when all parameters are left open to evolutionary optimisation complex behaviour can result from simple components
    corecore