1,348 research outputs found

    Real-Time Algorithms of Object Detection Using Classifiers

    Get PDF

    Speeding up Adaboost object detection with motion segmentation and Haar feature acceleration

    Get PDF
    A key challenge in a surveillance system is the object detection task. Object detection in general is a non-trivial problem. A sub-problem within the broader context of object detection which many researchers focus on is face detection. Numerous techniques have been proposed for face detection. One of the better performing algorithms is proposed by Viola et. al. This algorithm is based on Adaboost and uses Haar features to detect objects. The main reason for its popularity is very low false positive rates and the fact that the classifier network can be trained for any detection task. The use of Haar basis functions to represent key object features is the key to its success. The basis functions are organized as a network to form a strong classifier. To detect objects, this technique divides each input image into non-overlapping sub-windows and the strong classifier is applied to each sub-window to detect the presence of an object. The process is repeated at multiple scales of the input image to detect objects of various sizes. In this thesis we propose an object detection system that uses object segmentation as a preprocessing step. We use Mixture of Gaussians (MoG) proposed by Staffer et. al. for object segmentation. One key advantage with using segmentation to extract image regions of interest is that it reduces the number of search windows sent to detection task, thereby reducing the computational complexity and the execution time. Moreover, owing to the computational complexity of both the segmentation and detection algorithms we used in the system, we propose hardware architectures for accelerating key computationally intensive blocks. In this thesis we propose hardware architecture for MoG and also for a key compute intensive block within the adaboost algorithm corresponding to the Haar feature computation

    FPGA-Based Portable Ultrasound Scanning System with Automatic Kidney Detection

    Get PDF
    Bedsides diagnosis using portable ultrasound scanning (PUS) offering comfortable diagnosis with various clinical advantages, in general, ultrasound scanners suffer from a poor signal-to-noise ratio, and physicians who operate the device at point-of-care may not be adequately trained to perform high level diagnosis. Such scenarios can be eradicated by incorporating ambient intelligence in PUS. In this paper, we propose an architecture for a PUS system, whose abilities include automated kidney detection in real time. Automated kidney detection is performed by training the Viola–Jones algorithm with a good set of kidney data consisting of diversified shapes and sizes. It is observed that the kidney detection algorithm delivers very good performance in terms of detection accuracy. The proposed PUS with kidney detection algorithm is implemented on a single Xilinx Kintex-7 FPGA, integrated with a Raspberry Pi ARM processor running at 900 MHz

    Real Time Weed Detection using a Boosted Cascade of Simple Features

    Get PDF
    Weed detection is a crucial issue in precision agriculture. In computer vision, variety of techniques are developed to detect, identify and locate weeds in different cultures. In this article, we present a real-time new weed detection method, through an embedded monocular vision. Our approach is based on the use of a cascade of discriminative classifiers formed by the Haar-like features. The quality of the results determines the validity of our approach, and opens the way to new horizons in weed detection

    Improved Hands-Free Text Entry System

    Get PDF
    An input device is a hardware device which is used to send input data to a computer or which is used to control and interact with a computer system. Contemporary input mechanisms can be categorized by the input medium: Keyboards and mice are hand-operated, Siri and Alexa are voice-based, etc. The objective of this project was to come up with a head movement based input system that improves upon earlier such systems. Input entry based on head movements may help people with disabilities to interact with computers more easily. The system developed provides the flexibility to capture rigid and non- rigid motions. Unlike prior work, the organization of alphabet symbols in our design is based on the frequency of the characters in the English dictionary. We conducted experiments on our system and compared it to previous head movement systems

    Real-time embedded eye detection system

    Get PDF
    The detection of a person’s eyes is a basic task in applications as important as iris recognition in biometric identification or fatigue detection in driving assistance systems. Current commercial and research systems use software frameworks that require a dedicated computer, whose power consumption, size, and price are significantly large. This paper presents a hardware-based embedded solution for eye detection in real-time. From an algorithmic point-of-view, the popular Viola-Jones approach has been redesigned to enable highly parallel, single-pass image-processing implementation. Synthesized and implemented in an All-Programmable System-on-Chip (AP SoC), this proposal allows us to process more than 88 frames per second (fps), taking the classifier less than 2 ms per image. Experimental validation has been successfully addressed in an iris recognition system that works with walking subjects. In this case, the prototype module includes a CMOS digital imaging sensor providing 16 Mpixels images, and it outputs a stream of detected eyes as 640 × 480 images. Experiments for determining the accuracy of the proposed system in terms of eye detection are performed in the CASIA-Iris-distance V4 database. Significantly, they show that the accuracy in terms of eye detection is 100%.This work has been partially developed within the project RTI2018-099522-B-C4X, funded by the Gobierno de España and FEDER funds, and the ARMORI project (CEIATECH-10) funded by the University of Málaga. Portions of the research in this paper use the CASIA-Iris V4 collected by the Chinese Academy of Sciences - Institute of Automation (CASIA)

    A Review on Real Time Integrated CCTV System Using Face Detection for Vehicle Seat Vacancy Identification with Image Processing Technique

    Get PDF
    We are describes the technique for real time human face detection and counting the number of passengers in vehicle and also gender of the passengers.The Image processing technology is very popular,now at present all are going to use it for various purpose. It can be applied to various applications for detecting and processing the digital images. Face detection is a part of image processing. It is used for finding the face of human in a given area. Face detection is used in many applications such as face recognition, people tracking, or photography. In this paper,The webcam is installed in public vehicle and connected with Raspberry Pi model. We use face detection technique for detecting and counting the number of passengers in public vehicle via webcam with the help of image processing and Raspberry Pi
    • …
    corecore