38 research outputs found

    Project Final Report – FREEDOM ICT-248891

    Get PDF
    This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.Preprin

    최적 위상 검출 회로를 이용한 클럭 및 데이터 복원 회로에 관한 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 8. 김재하.Bang-bang phase detectors are widely used for today's high-speed communication circuits such as phase-locked loops (PLLs), delay-locked loops (DLLs) and clock-and-data recovery loops (CDRs) because it is simple, fast, accurate and amenable to digital implementations. However, its hard nonlinearity poses difficulties in design and analyses of the bang-bang controlled timing loops. Especially, dithering in bang-bang controlled CDRs sets conflicting requirements on the phase adjustment resolution as one tries to maximize the tracking bandwidth and minimize jitter. A fine phase step is helpful to minimize the dithering, but it requires circuits with finer resolution that consumes large power and area. In this background, this dissertation introduces an optimal phase detection technique that can minimize the effect of dithering without requiring fine phase resolution. A novel phase interval detector that looks for a phase interval enclosing the desired lock point is shown to find the optimal phase that minimizes the timing error without dithering. A digitally-controlled, phase-interpolating DLL-based CDR fabricated in 65nm CMOS demonstrates that it can achieve small area of 0.026mm^2 and low jitter of 41mUIp-p with a coarse phase adjustment step of 0.11UI, while dissipating only 8.4mW at 5Gbps. For the theoretic basis, various analysis techniques to understand bang-bang controlled timing loops are also presented. The proposed techniques are explained for both linearized loop and non-linear one, and applied to the evaluation of the proposed phase detection technique.1 Introduction 1 1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Contribution and Organization . . . . . . . . . . . . . . . . . 6 2 Pseudo-Linear Analysis of Bang-Bang Controlled Loops 9 2.1 Model of a Second-Order, Bang-Bang Controlled Timing Loop . . . 9 2.2 Necessary Condition for the Pseudo-Linear Analysis . . . . . . . . . 12 2.3 Derivation of Necessity Condition for the Pseudo-Linear Analysis . . 17 2.4 A Linearized Model of the Bang-Bang Phase Detector . . . . . . . . 18 2.5 Linearized Gain of a Bang-Bang Phase Detector for Jitter Transfer and Jitter Generation Analyses . . . . . . . . . . . . . . . . . . . . . 21 2.6 Jitter Transfer and Jitter Generation Analyses . . . . . . . . . . . . 29 2.7 Linearized Gains of a Bang-bang Phase Detector for Jitter Tolerance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.8 Jitter Tolerance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 Nonlinear Analysis of Bang-Bang Controlled Loops 48 3.1 Transient Analysis of Bang-Bang Controlled Timing Loops . . . . . 48 3.2 Phase-portrait Analysis of Bang-Bang Controlled Timing Loops . . . 51 3.3 Markov-chain Analysis of Bang-Bang Controlled Timing Loops . . . 53 3.4 Analysis of Clock-and-Data Recovery Circuits . . . . . . . . . . . . . 57 3.4.1 Prediction of Bit-Error Rate . . . . . . . . . . . . . . . . . . 57 3.4.2 Eect of Transition Density . . . . . . . . . . . . . . . . . . . 58 3.4.3 Eect of Decimation . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.4 Analysis of Oversampling Phase Detectors . . . . . . . . . . . 66 4 Design of Ditherless Clock and Data Recovery Circuit 75 4.1 Optimal Phase Detection . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3 Analysis of the CDR with Phase Interval Detection . . . . . . . . . . 84 4.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.1 Sampling Receiver . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.2 Phase Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.4.3 Digital Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 Phase Locked-Loop . . . . . . . . . . . . . . . . . . . . . . . . 98 4.4.5 Phase Interpolator . . . . . . . . . . . . . . . . . . . . . . . . 99 4.5 Built-In Self-Test Circuit for Jitter Tolerance Measurement . . . . . 102 4.6 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5 Conclusion 114 References 116Docto

    High throughput image compression and decompression on GPUs

    Get PDF
    Diese Arbeit befasst sich mit der Entwicklung eines GPU-freundlichen, intra-only, Wavelet-basierten Videokompressionsverfahrens mit hohem Durchsatz, das für visuell verlustfreie Anwendungen optimiert ist. Ausgehend von der Beobachtung, dass der JPEG 2000 Entropie-Kodierer ein Flaschenhals ist, werden verschiedene algorithmische Änderungen vorgeschlagen und bewertet. Zunächst wird der JPEG 2000 Selective Arithmetic Coding Mode auf der GPU realisiert, wobei sich die Erhöhung des Durchsatzes hierdurch als begrenzt zeigt. Stattdessen werden zwei nicht standard-kompatible Änderungen vorgeschlagen, die (1) jede Bitebebene in nur einem einzelnen Pass verarbeiten (Single-Pass-Modus) und (2) einen echten Rohcodierungsmodus einführen, der sample-weise parallelisierbar ist und keine aufwendige Kontextmodellierung erfordert. Als nächstes wird ein alternativer Entropiekodierer aus der Literatur, der Bitplane Coder with Parallel Coefficient Processing (BPC-PaCo), evaluiert. Er gibt Signaladaptivität zu Gunsten von höherer Parallelität auf und daher wird hier untersucht und gezeigt, dass ein aus verschiedensten Testsequenzen gemitteltes statisches Wahrscheinlichkeitsmodell eine kompetitive Kompressionseffizienz erreicht. Es wird zudem eine Kombination von BPC-PaCo mit dem Single-Pass-Modus vorgeschlagen, der den Speedup gegenüber dem JPEG 2000 Entropiekodierer von 2,15x (BPC-PaCo mit zwei Pässen) auf 2,6x (BPC-PaCo mit Single-Pass-Modus) erhöht auf Kosten eines um 0,3 dB auf 1,0 dB erhöhten Spitzen-Signal-Rausch-Verhältnis (PSNR). Weiter wird ein paralleler Algorithmus zur Post-Compression Ratenkontrolle vorgestellt sowie eine parallele Codestream-Erstellung auf der GPU. Es wird weiterhin ein theoretisches Laufzeitmodell formuliert, das es durch Benchmarking von einer GPU ermöglicht die Laufzeit einer Routine auf einer anderen GPU vorherzusagen. Schließlich wird der erste JPEG XS GPU Decoder vorgestellt und evaluiert. JPEG XS wurde als Low Complexity Codec konzipiert und forderte erstmals explizit GPU-Freundlichkeit bereits im Call for Proposals. Ab Bitraten über 1 bpp ist der Decoder etwa 2x schneller im Vergleich zu JPEG 2000 und 1,5x schneller als der schnellste hier vorgestellte Entropiekodierer (BPC-PaCo mit Single-Pass-Modus). Mit einer GeForce GTX 1080 wird ein Decoder Durchsatz von rund 200 fps für eine UHD-4:4:4-Sequenz erreicht.This work investigates possibilities to create a high throughput, GPU-friendly, intra-only, Wavelet-based video compression algorithm optimized for visually lossless applications. Addressing the key observation that JPEG 2000’s entropy coder is a bottleneck and might be overly complex for a high bit rate scenario, various algorithmic alterations are proposed. First, JPEG 2000’s Selective Arithmetic Coding mode is realized on the GPU, but the gains in terms of an increased throughput are shown to be limited. Instead, two independent alterations not compliant to the standard are proposed, that (1) give up the concept of intra-bit plane truncation points and (2) introduce a true raw-coding mode that is fully parallelizable and does not require any context modeling. Next, an alternative block coder from the literature, the Bitplane Coder with Parallel Coefficient Processing (BPC-PaCo), is evaluated. Since it trades signal adaptiveness for increased parallelism, it is shown here how a stationary probability model averaged from a set of test sequences yields competitive compression efficiency. A combination of BPC-PaCo with the single-pass mode is proposed and shown to increase the speedup with respect to the original JPEG 2000 entropy coder from 2.15x (BPC-PaCo with two passes) to 2.6x (proposed BPC-PaCo with single-pass mode) at the marginal cost of increasing the PSNR penalty by 0.3 dB to at most 1 dB. Furthermore, a parallel algorithm is presented that determines the optimal code block bit stream truncation points (given an available bit rate budget) and builds the entire code stream on the GPU, reducing the amount of data that has to be transferred back into host memory to a minimum. A theoretical runtime model is formulated that allows, based on benchmarking results on one GPU, to predict the runtime of a kernel on another GPU. Lastly, the first ever JPEG XS GPU-decoder realization is presented. JPEG XS was designed to be a low complexity codec and for the first time explicitly demanded GPU-friendliness already in the call for proposals. Starting at bit rates above 1 bpp, the decoder is around 2x faster compared to the original JPEG 2000 and 1.5x faster compared to JPEG 2000 with the fastest evaluated entropy coder (BPC-PaCo with single-pass mode). With a GeForce GTX 1080, a decoding throughput of around 200 fps is achieved for a UHD 4:4:4 sequence

    Contributions in image and video coding

    Get PDF
    Orientador: Max Henrique Machado CostaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: A comunidade de codificação de imagens e vídeo vem também trabalhando em inovações que vão além das tradicionais técnicas de codificação de imagens e vídeo. Este trabalho é um conjunto de contribuições a vários tópicos que têm recebido crescente interesse de pesquisadores na comunidade, nominalmente, codificação escalável, codificação de baixa complexidade para dispositivos móveis, codificação de vídeo de múltiplas vistas e codificação adaptativa em tempo real. A primeira contribuição estuda o desempenho de três transformadas 3-D rápidas por blocos em um codificador de vídeo de baixa complexidade. O codificador recebeu o nome de Fast Embedded Video Codec (FEVC). Novos métodos de implementação e ordens de varredura são propostos para as transformadas. Os coeficiente 3-D são codificados por planos de bits pelos codificadores de entropia, produzindo um fluxo de bits (bitstream) de saída totalmente embutida. Todas as implementações são feitas usando arquitetura com aritmética inteira de 16 bits. Somente adições e deslocamentos de bits são necessários, o que reduz a complexidade computacional. Mesmo com essas restrições, um bom desempenho em termos de taxa de bits versus distorção pôde ser obtido e os tempos de codificação são significativamente menores (em torno de 160 vezes) quando comparados ao padrão H.264/AVC. A segunda contribuição é a otimização de uma recente abordagem proposta para codificação de vídeo de múltiplas vistas em aplicações de video-conferência e outras aplicações do tipo "unicast" similares. O cenário alvo nessa abordagem é fornecer vídeo com percepção real em 3-D e ponto de vista livre a boas taxas de compressão. Para atingir tal objetivo, pesos são atribuídos a cada vista e mapeados em parâmetros de quantização. Neste trabalho, o mapeamento ad-hoc anteriormente proposto entre pesos e parâmetros de quantização é mostrado ser quase-ótimo para uma fonte Gaussiana e um mapeamento ótimo é derivado para fonte típicas de vídeo. A terceira contribuição explora várias estratégias para varredura adaptativa dos coeficientes da transformada no padrão JPEG XR. A ordem de varredura original, global e adaptativa do JPEG XR é comparada com os métodos de varredura localizados e híbridos propostos neste trabalho. Essas novas ordens não requerem mudanças nem nos outros estágios de codificação e decodificação, nem na definição da bitstream A quarta e última contribuição propõe uma transformada por blocos dependente do sinal. As transformadas hierárquicas usualmente exploram a informação residual entre os níveis no estágio da codificação de entropia, mas não no estágio da transformada. A transformada proposta neste trabalho é uma técnica de compactação de energia que também explora as similaridades estruturais entre os níveis de resolução. A idéia central da técnica é incluir na transformada hierárquica um número de funções de base adaptativas derivadas da resolução menor do sinal. Um codificador de imagens completo foi desenvolvido para medir o desempenho da nova transformada e os resultados obtidos são discutidos neste trabalhoAbstract: The image and video coding community has often been working on new advances that go beyond traditional image and video architectures. This work is a set of contributions to various topics that have received increasing attention from researchers in the community, namely, scalable coding, low-complexity coding for portable devices, multiview video coding and run-time adaptive coding. The first contribution studies the performance of three fast block-based 3-D transforms in a low complexity video codec. The codec has received the name Fast Embedded Video Codec (FEVC). New implementation methods and scanning orders are proposed for the transforms. The 3-D coefficients are encoded bit-plane by bit-plane by entropy coders, producing a fully embedded output bitstream. All implementation is performed using 16-bit integer arithmetic. Only additions and bit shifts are necessary, thus lowering computational complexity. Even with these constraints, reasonable rate versus distortion performance can be achieved and the encoding time is significantly smaller (around 160 times) when compared to the H.264/AVC standard. The second contribution is the optimization of a recent approach proposed for multiview video coding in videoconferencing applications or other similar unicast-like applications. The target scenario in this approach is providing realistic 3-D video with free viewpoint video at good compression rates. To achieve such an objective, weights are computed for each view and mapped into quantization parameters. In this work, the previously proposed ad-hoc mapping between weights and quantization parameters is shown to be quasi-optimum for a Gaussian source and an optimum mapping is derived for a typical video source. The third contribution exploits several strategies for adaptive scanning of transform coefficients in the JPEG XR standard. The original global adaptive scanning order applied in JPEG XR is compared with the localized and hybrid scanning methods proposed in this work. These new orders do not require changes in either the other coding and decoding stages or in the bitstream definition. The fourth and last contribution proposes an hierarchical signal dependent block-based transform. Hierarchical transforms usually exploit the residual cross-level information at the entropy coding step, but not at the transform step. The transform proposed in this work is an energy compaction technique that can also exploit these cross-resolution-level structural similarities. The core idea of the technique is to include in the hierarchical transform a number of adaptive basis functions derived from the lower resolution of the signal. A full image codec is developed in order to measure the performance of the new transform and the obtained results are discussed in this workDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia Elétric

    DCT-based Image/Video Compression: New Design Perspectives

    Get PDF
    To push the envelope of DCT-based lossy image/video compression, this thesis is motivated to revisit design of some fundamental blocks in image/video coding, ranging from source modelling, quantization table, quantizers, to entropy coding. Firstly, to better handle the heavy tail phenomenon commonly seen in DCT coefficients, a new model dubbed transparent composite model (TCM) is developed and justified. Given a sequence of DCT coefficients, the TCM first separates the tail from the main body of the sequence, and then uses a uniform distribution to model DCT coefficients in the heavy tail, while using a parametric distribution to model DCT coefficients in the main body. The separation boundary and other distribution parameters are estimated online via maximum likelihood (ML) estimation. Efficient online algorithms are proposed for parameter estimation and their convergence is also proved. When the parametric distribution is truncated Laplacian, the resulting TCM dubbed Laplacian TCM (LPTCM) not only achieves superior modeling accuracy with low estimation complexity, but also has a good capability of nonlinear data reduction by identifying and separating a DCT coefficient in the heavy tail (referred to as an outlier) from a DCT coefficient in the main body (referred to as an inlier). This in turn opens up opportunities for it to be used in DCT-based image compression. Secondly, quantization table design is revisited for image/video coding where soft decision quantization (SDQ) is considered. Unlike conventional approaches where quantization table design is bundled with a specific encoding method, we assume optimal SDQ encoding and design a quantization table for the purpose of reconstruction. Under this assumption, we model transform coefficients across different frequencies as independently distributed random sources and apply the Shannon lower bound to approximate the rate distortion function of each source. We then show that a quantization table can be optimized in a way that the resulting distortion complies with certain behavior, yielding the so-called optimal distortion profile scheme (OptD). Guided by this new theoretical result, we present an efficient statistical-model-based algorithm using the Laplacian model to design quantization tables for DCT-based image compression. When applied to standard JPEG encoding, it provides more than 1.5 dB performance gain (in PSNR), with almost no extra burden on complexity. Compared with the state-of-the-art JPEG quantization table optimizer, the proposed algorithm offers an average 0.5 dB gain with computational complexity reduced by a factor of more than 2000 when SDQ is off, and a 0.1 dB performance gain or more with 85% of the complexity reduced when SDQ is on. Thirdly, based on the LPTCM and OptD, we further propose an efficient non-predictive DCT-based image compression system, where the quantizers and entropy coding are completely re-designed, and the relative SDQ algorithm is also developed. The proposed system achieves overall coding results that are among the best and similar to those of H.264 or HEVC intra (predictive) coding, in terms of rate vs visual quality. On the other hand, in terms of rate vs objective quality, it significantly outperforms baseline JPEG by more than 4.3 dB on average, with a moderate increase on complexity, and ECEB, the state-of-the-art non-predictive image coding, by 0.75 dB when SDQ is off, with the same level of computational complexity, and by 1 dB when SDQ is on, at the cost of extra complexity. In comparison with H.264 intra coding, our system provides an overall 0.4 dB gain or so, with dramatically reduced computational complexity. It offers comparable or even better coding performance than HEVC intra coding in the high-rate region or for complicated images, but with only less than 5% of the encoding complexity of the latter. In addition, our proposed DCT-based image compression system also offers a multiresolution capability, which, together with its comparatively high coding efficiency and low complexity, makes it a good alternative for real-time image processing applications

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Special Topics in Information Technology

    Get PDF
    This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2019-20 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    Bit rate transcoding of H.264/AVC based on rate shaping and requantization

    Get PDF

    Adaptive Control

    Get PDF
    Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development.The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems
    corecore