15,847 research outputs found

    The Use of Clustering Methods in Memory-Based Collaborative Filtering for Ranking-Based Recommendation Systems

    Get PDF
    This research explores the application of clustering techniques and frequency normalization in collaborative filtering to enhance the performance of ranking-based recommendation systems. Collaborative filtering is a popular approach in recommendation systems that relies on user-item interaction data. In ranking-based recommendation systems, the goal is to provide users with a personalized list of items, sorted by their predicted relevance. In this study, we propose a novel approach that combines clustering and frequency normalization techniques. Clustering, in the context of data analysis, is a technique used to organize and group together users or items that share similar characteristics or features. This method proves beneficial in enhancing recommendation accuracy by uncovering hidden patterns within the data. Additionally, frequency normalization is utilized to mitigate potential biases in user-item interaction data, ensuring fair and unbiased recommendations. The research methodology involves data preprocessing, clustering algorithm selection, frequency normalization techniques, and evaluation metrics. Experimental results demonstrate that the proposed method outperforms traditional collaborative filtering approaches in terms of ranking accuracy and recommendation quality. This approach has the potential to enhance recommendation systems across various domains, including e-commerce, content recommendation, and personalized advertising

    IMPROVING COLLABORATIVE FILTERING RECOMMENDER BY USING MULTI-CRITERIA RATING AND IMPLICIT SOCIAL NETWORKS TO RECOMMEND RESEARCH PAPERS

    Get PDF
    Research paper recommender systems (RSs) aim to alleviate the information overload of researchers by suggesting relevant and useful papers. The collaborative filtering in the area of recommending research papers can benefit by using richer user feedback data through multi-criteria rating, and by integrating richer social network data into the recommender algorithm. Existing approaches using collaborative filtering or hybrid approaches typically allow only one rating criterion (overall liking) for users to evaluate papers. We conducted a qualitative study using focus group to explore the most important criteria for rating research papers that can be used to control the paper recommendation by enabling users to set the weight for each criterion. We investigated also the effect of using different rating criteria on the user interface design and how the user can control the weight of the criteria. We followed that by a quantitative study using a questionnaire to validate our findings from the focus group and to find if the chosen criteria are domain independent. Combining social network information with collaborative filtering recommendation algorithms has successfully reduced some of the drawbacks of collaborative filtering and increased the accuracy of recommendations. All existing recommendation approaches that combine social network information with collaborative filtering in this domain have used explicit social relations that are initiated by users (e.g. “friendship”, “following”). The results have shown that the recommendations produced using explicit social relations cannot compete with traditional collaborative filtering and suffer from the low user coverage. We argue that the available data in social bookmarking Web sites can be exploited to connect similar users using implicit social connections based on their bookmarking behavior. We explore the implicit social relations between users in social bookmarking Web sites (such as CiteULike and Mendeley), and propose three different implicit social networks to recommend relevant papers to users: readership, co-readership and tag-based implicit social networks. First, for each network, we tested the interest similarities of users who are connected using the proposed implicit social networks and compare them with the interest similarities using two explicit social networks: co-authorship and friendship. We found that the readership implicit social network connects users with more similarities than users who are connected using co-authorship and friendship explicit social networks. Then, we compare the recommendation using three different recommendation approaches and implicit social network alone with the recommendation using implicit and explicit social network. We found that fusing recommendation from implicit and explicit social networks can increase the prediction accuracy, and user coverage. The trade-off between the prediction accuracy and diversity was also studied with different social distances between users. The results showed that the diversity of the recommended list increases with the increase of social distance. To summarize, the main contributions of this dissertation to the area of research paper recommendation are two-fold. It is the first to explore the use of multi-criteria rating for research papers. Secondly, it proposes and evaluates a novel approach to improve collaborative filtering in both prediction accuracy (performance) and user coverage and diversity (nonperformance measures) in social bookmarking systems for sharing research papers, by defining and exploiting several implicit social networks from usage data that is widely available

    Hybrid group recommendations for a travel service

    Get PDF
    Recommendation techniques have proven their usefulness as a tool to cope with the information overload problem in many classical domains such as movies, books, and music. Additional challenges for recommender systems emerge in the domain of tourism such as acquiring metadata and feedback, the sparsity of the rating matrix, user constraints, and the fact that traveling is often a group activity. This paper proposes a recommender system that offers personalized recommendations for travel destinations to individuals and groups. These recommendations are based on the users' rating profile, personal interests, and specific demands for their next destination. The recommendation algorithm is a hybrid approach combining a content-based, collaborative filtering, and knowledge-based solution. For groups of users, such as families or friends, individual recommendations are aggregated into group recommendations, with an additional opportunity for users to give feedback on these group recommendations. A group of test users evaluated the recommender system using a prototype web application. The results prove the usefulness of individual and group recommendations and show that users prefer the hybrid algorithm over each individual technique. This paper demonstrates the added value of various recommendation algorithms in terms of different quality aspects, compared to an unpersonalized list of the most-popular destinations
    • …
    corecore