816 research outputs found

    Classification and Geometry of General Perceptual Manifolds

    Get PDF
    Perceptual manifolds arise when a neural population responds to an ensemble of sensory signals associated with different physical features (e.g., orientation, pose, scale, location, and intensity) of the same perceptual object. Object recognition and discrimination requires classifying the manifolds in a manner that is insensitive to variability within a manifold. How neuronal systems give rise to invariant object classification and recognition is a fundamental problem in brain theory as well as in machine learning. Here we study the ability of a readout network to classify objects from their perceptual manifold representations. We develop a statistical mechanical theory for the linear classification of manifolds with arbitrary geometry revealing a remarkable relation to the mathematics of conic decomposition. Novel geometrical measures of manifold radius and manifold dimension are introduced which can explain the classification capacity for manifolds of various geometries. The general theory is demonstrated on a number of representative manifolds, including L2 ellipsoids prototypical of strictly convex manifolds, L1 balls representing polytopes consisting of finite sample points, and orientation manifolds which arise from neurons tuned to respond to a continuous angle variable, such as object orientation. The effects of label sparsity on the classification capacity of manifolds are elucidated, revealing a scaling relation between label sparsity and manifold radius. Theoretical predictions are corroborated by numerical simulations using recently developed algorithms to compute maximum margin solutions for manifold dichotomies. Our theory and its extensions provide a powerful and rich framework for applying statistical mechanics of linear classification to data arising from neuronal responses to object stimuli, as well as to artificial deep networks trained for object recognition tasks.Comment: 24 pages, 12 figures, Supplementary Material

    A Geometric Algorithm for Scalable Multiple Kernel Learning

    Full text link
    We present a geometric formulation of the Multiple Kernel Learning (MKL) problem. To do so, we reinterpret the problem of learning kernel weights as searching for a kernel that maximizes the minimum (kernel) distance between two convex polytopes. This interpretation combined with novel structural insights from our geometric formulation allows us to reduce the MKL problem to a simple optimization routine that yields provable convergence as well as quality guarantees. As a result our method scales efficiently to much larger data sets than most prior methods can handle. Empirical evaluation on eleven datasets shows that we are significantly faster and even compare favorably with a uniform unweighted combination of kernels.Comment: 20 page

    A New Blind Method for Detecting Novel Steganography

    Get PDF
    Steganography is the art of hiding a message in plain sight. Modern steganographic tools that conceal data in innocuous-looking digital image files are widely available. The use of such tools by terrorists, hostile states, criminal organizations, etc., to camouflage the planning and coordination of their illicit activities poses a serious challenge. Most steganography detection tools rely on signatures that describe particular steganography programs. Signature-based classifiers offer strong detection capabilities against known threats, but they suffer from an inability to detect previously unseen forms of steganography. Novel steganography detection requires an anomaly-based classifier. This paper describes and demonstrates a blind classification algorithm that uses hyper-dimensional geometric methods to model steganography-free jpeg images. The geometric model, comprising one or more convex polytopes, hyper-spheres, or hyper-ellipsoids in the attribute space, provides superior anomaly detection compared to previous research. Experimental results show that the classifier detects, on average, 85.4% of Jsteg steganography images with a mean embedding rate of 0.14 bits per pixel, compared to previous research that achieved a mean detection rate of just 65%. Further, the classification algorithm creates models for as many training classes of data as are available, resulting in a hybrid anomaly/signature or signature-only based classifier, which increases Jsteg detection accuracy to 95%

    A new method for anomaly detection based on non-convex boundaries with random two-dimensional projections

    Get PDF
    [Abstract] The implementation of anomaly detection systems represents a key problem that has been focusing the efforts of scientific community. In this context, the use one-class techniques to model a training set of non-anomalous objects can play a significant role. One common approach to face the one-class problem is based on determining the geometric boundaries of the target set. More specifically, the use of convex hull combined with random projections offers good results but presents low performance when it is applied to non-convex sets. Then, this work proposes a new method that face this issue by implementing non-convex boundaries over each projection. The proposal was assessed and compared with the most common one-class techniques, over different sets, obtaining successful results

    Doctor of Philosophy

    Get PDF
    dissertationThe contributions in the area of kernelized learning techniques have expanded beyond a few basic kernel functions to general kernel functions that could be learned along with the rest of a statistical learning model. This dissertation aims to explore various directions in \emph{kernel learning}, a setting where we can learn not only a model, but also glean information about the geometry of the data from which we learn, by learning a positive definite (p.d.) kernel. Throughout, we can exploit several properties of kernels that relate to their \emph{geometry} -- a facet that is often overlooked. We revisit some of the necessary mathematical background required to understand kernel learning in context, such as reproducing kernel Hilbert spaces (RKHSs), the reproducing property, the representer theorem, etc. We then cover kernelized learning with support vector machines (SVMs), multiple kernel learning (MKL), and localized kernel learning (LKL). We move on to Bochner's theorem, a tool vital to one of the kernel learning areas we explore. The main portion of the thesis is divided into two parts: (1) kernel learning with SVMs, a.k.a. MKL, and (2) learning based on Bochner's theorem. In the first part, we present efficient, accurate, and scalable algorithms based on the SVM, one that exploits multiplicative weight updates (MWU), and another that exploits local geometry. In the second part, we use Bochner's theorem to incorporate a kernel into a neural network and discover that kernel learning in this fashion, continuous kernel learning (CKL), is superior even to MKL

    A framework of face recognition with set of testing images

    Get PDF
    We propose a novel framework to solve the face recognition problem base on set of testing images. Our framework can handle the case that no pose overlap between training set and query set. The main techniques used in this framework are manifold alignment, face normalization and discriminant learning. Experiments on different databases show our system outperforms some state of the art methods
    • …
    corecore