8,123 research outputs found

    A blob method for diffusion

    Get PDF
    As a counterpoint to classical stochastic particle methods for diffusion, we develop a deterministic particle method for linear and nonlinear diffusion. At first glance, deterministic particle methods are incompatible with diffusive partial differential equations since initial data given by sums of Dirac masses would be smoothed instantaneously: particles do not remain particles. Inspired by classical vortex blob methods, we introduce a nonlocal regularization of our velocity field that ensures particles do remain particles, and we apply this to develop a numerical blob method for a range of diffusive partial differential equations of Wasserstein gradient flow type, including the heat equation, the porous medium equation, the Fokker-Planck equation, the Keller-Segel equation, and its variants. Our choice of regularization is guided by the Wasserstein gradient flow structure, and the corresponding energy has a novel form, combining aspects of the well-known interaction and potential energies. In the presence of a confining drift or interaction potential, we prove that minimizers of the regularized energy exist and, as the regularization is removed, converge to the minimizers of the unregularized energy. We then restrict our attention to nonlinear diffusion of porous medium type with at least quadratic exponent. Under sufficient regularity assumptions, we prove that gradient flows of the regularized energies converge to solutions of the porous medium equation. As a corollary, we obtain convergence of our numerical blob method, again under sufficient regularity assumptions. We conclude by considering a range of numerical examples to demonstrate our method's rate of convergence to exact solutions and to illustrate key qualitative properties preserved by the method, including asymptotic behavior of the Fokker-Planck equation and critical mass of the two-dimensional Keller-Segel equation

    Removing the Big Bang Singularity: The role of the generalized uncertainty principle in quantum gravity

    Full text link
    The possibility of avoiding the big bang singularity by means of a generalized uncertainty principle is investigated. In relation with this matter, the statistical mechanics of a free-particle system obeying the generalized uncertainty principle is studied and it is shown that the entropy of the system has a finite value in the infinite temperature limit. It is then argued that negative temperatures and negative pressures are possible in this system. Finally, it is shown that this model can remove the big bang singularity.Comment: 8 pages, Accepted for publication in Astrophysics & Space Scienc

    Stochastic Flux-Freezing and Magnetic Dynamo

    Full text link
    We argue that magnetic flux-conservation in turbulent plasmas at high magnetic Reynolds numbers neither holds in the conventional sense nor is entirely broken, but instead is valid in a novel statistical sense associated to the "spontaneous stochasticity" of Lagrangian particle tra jectories. The latter phenomenon is due to the explosive separation of particles undergoing turbulent Richardson diffusion, which leads to a breakdown of Laplacian determinism for classical dynamics. We discuss empirical evidence for spontaneous stochasticity, including our own new numerical results. We then use a Lagrangian path-integral approach to establish stochastic flux-freezing for resistive hydromagnetic equations and to argue, based on the properties of Richardson diffusion, that flux-conservation must remain stochastic at infinite magnetic Reynolds number. As an important application of these results we consider the kinematic, fluctuation dynamo in non-helical, incompressible turbulence at unit magnetic Prandtl number. We present results on the Lagrangian dynamo mechanisms by a stochastic particle method which demonstrate a strong similarity between the Pr = 1 and Pr = 0 dynamos. Stochasticity of field-line motion is an essential ingredient of both. We finally consider briefly some consequences for nonlinear MHD turbulence, dynamo and reconnectionComment: 29 pages, 10 figure

    Fast Magnetic Reconnection and Spontaneous Stochasticity

    Full text link
    Magnetic field-lines in astrophysical plasmas are expected to be frozen-in at scales larger than the ion gyroradius. The rapid reconnection of magnetic flux structures with dimensions vastly larger than the gyroradius requires a breakdown in the standard Alfv\'en flux-freezing law. We attribute this breakdown to ubiquitous MHD plasma turbulence with power-law scaling ranges of velocity and magnetic energy spectra. Lagrangian particle trajectories in such environments become "spontaneously stochastic", so that infinitely-many magnetic field-lines are advected to each point and must be averaged to obtain the resultant magnetic field. The relative distance between initial magnetic field lines which arrive to the same final point depends upon the properties of two-particle turbulent dispersion. We develop predictions based on the phenomenological Goldreich & Sridhar theory of strong MHD turbulence and on weak MHD turbulence theory. We recover the predictions of the Lazarian & Vishniac theory for the reconnection rate of large-scale magnetic structures. Lazarian & Vishniac also invoked "spontaneous stochasticity", but of the field-lines rather than of the Lagrangian trajectories. More recent theories of fast magnetic reconnection appeal to microscopic plasma processes that lead to additional terms in the generalized Ohm's law, such as the collisionless Hall term. We estimate quantitatively the effect of such processes on the inertial-range turbulence dynamics and find them to be negligible in most astrophysical environments. For example, the predictions of the Lazarian-Vishniac theory are unchanged in Hall MHD turbulence with an extended inertial range, whenever the ion skin depth δi\delta_i is much smaller than the turbulent integral length or injection-scale Li.L_i.Comment: 31 pages, 5 figure
    • …
    corecore