497 research outputs found

    Covariate Analysis for View-point Independent Gait Recognition

    No full text
    Many studies have shown that gait can be deployed as a biometric. Few of these have addressed the effects of view-point and covariate factors on the recognition process. We describe the first analysis which combines view-point invariance for gait recognition which is based on a model-based pose estimation approach from a single un-calibrated camera. A set of experiments are carried out to explore how such factors including clothing, carrying conditions and view-point can affect the identification process using gait. Based on a covariate-based probe dataset of over 270 samples, a recognition rate of 73.4% is achieved using the KNN classifier. This confirms that people identification using dynamic gait features is still perceivable with better recognition rate even under the different covariate factors. As such, this is an important step in translating research from the laboratory to a surveillance environment

    Hierarchical and multi-featured fusion for effective gait recognition under variable scenarios

    Get PDF
    Human identification by gait analysis has attracted a great deal of interest in the computer vision and forensics communities as an unobtrusive technique that is capable of recognizing humans at range. In recent years, significant progress has been made, and a number of approaches capable of this task have been proposed and developed. Among them, approaches based on single source features are the most popular. However the recognition rate of these methods is often unsatisfactory due to the lack of information contained in single feature sources. Consequently, in this paper, a hierarchal and multi-featured fusion approach is proposed for effective gait recognition. In practice, using more features for fusion does not necessarily mean a better recognition rate and features should in fact be carefully selected such that they are complementary to each other. Here, complementary features are extracted in three groups: Dynamic Region Area; Extension and Space features; and 2D Stick Figure Model features. To balance the proportion of features used in fusion a hierarchical feature-level fusion method is proposed. Comprehensive results of applying the proposed techniques to three well-known datasets have demonstrated that our fusion based approach can improve the overall recognition rate when compared to a benchmark algorithm

    Gait recognition based on shape and motion analysis of silhouette contours

    Get PDF
    This paper presents a three-phase gait recognition method that analyses the spatio-temporal shape and dynamic motion (STS-DM) characteristics of a human subject’s silhouettes to identify the subject in the presence of most of the challenging factors that affect existing gait recognition systems. In phase 1, phase-weighted magnitude spectra of the Fourier descriptor of the silhouette contours at ten phases of a gait period are used to analyse the spatio-temporal changes of the subject’s shape. A component-based Fourier descriptor based on anatomical studies of human body is used to achieve robustness against shape variations caused by all common types of small carrying conditions with folded hands, at the subject’s back and in upright position. In phase 2, a full-body shape and motion analysis is performed by fitting ellipses to contour segments of ten phases of a gait period and using a histogram matching with Bhattacharyya distance of parameters of the ellipses as dissimilarity scores. In phase 3, dynamic time warping is used to analyse the angular rotation pattern of the subject’s leading knee with a consideration of arm-swing over a gait period to achieve identification that is invariant to walking speed, limited clothing variations, hair style changes and shadows under feet. The match scores generated in the three phases are fused using weight-based score-level fusion for robust identification in the presence of missing and distorted frames, and occlusion in the scene. Experimental analyses on various publicly available data sets show that STS-DM outperforms several state-of-the-art gait recognition methods

    Action recognition using Kinematics Posture Feature on 3D skeleton joint locations

    Get PDF
    Action recognition is a very widely explored research area in computer vision and related fields. We propose Kinematics Posture Feature (KPF) extraction from 3D joint positions based on skeleton data for improving the performance of action recognition. In this approach, we consider the skeleton 3D joints as kinematics sensors. We propose Linear Joint Position Feature (LJPF) and Angular Joint Position Feature (AJPF) based on 3D linear joint positions and angles between bone segments. We then combine these two kinematics features for each video frame for each action to create the KPF feature sets. These feature sets encode the variation of motion in the temporal domain as if each body joint represents kinematics position and orientation sensors. In the next stage, we process the extracted KPF feature descriptor by using a low pass filter, and segment them by using sliding windows with optimized length. This concept resembles the approach of processing kinematics sensor data. From the segmented windows, we compute the Position-based Statistical Feature (PSF). These features consist of temporal domain statistical features (e.g., mean, standard deviation, variance, etc.). These statistical features encode the variation of postures (i.e., joint positions and angles) across the video frames. For performing classification, we explore Support Vector Machine (Linear), RNN, CNNRNN, and ConvRNN model. The proposed PSF feature sets demonstrate prominent performance in both statistical machine learning- and deep learning-based models. For evaluation, we explore five benchmark datasets namely UTKinect-Action3D, Kinect Activity Recognition Dataset (KARD), MSR 3D Action Pairs, Florence 3D, and Office Activity Dataset (OAD). To prevent overfitting, we consider the leave-one-subject-out framework as the experimental setup and perform 10-fold cross-validation. Our approach outperforms several existing methods in these benchmark datasets and achieves very promising classification performance

    Recognizing complex faces and gaits via novel probabilistic models

    Get PDF
    In the field of computer vision, developing automated systems to recognize people under unconstrained scenarios is a partially solved problem. In unconstrained sce- narios a number of common variations and complexities such as occlusion, illumi- nation, cluttered background and so on impose vast uncertainty to the recognition process. Among the various biometrics that have been emerging recently, this dissertation focus on two of them namely face and gait recognition. Firstly we address the problem of recognizing faces with major occlusions amidst other variations such as pose, scale, expression and illumination using a novel PRObabilistic Component based Interpretation Model (PROCIM) inspired by key psychophysical principles that are closely related to reasoning under uncertainty. The model basically employs Bayesian Networks to establish, learn, interpret and exploit intrinsic similarity mappings from the face domain. Then, by incorporating e cient inference strategies, robust decisions are made for successfully recognizing faces under uncertainty. PROCIM reports improved recognition rates over recent approaches. Secondly we address the newly upcoming gait recognition problem and show that PROCIM can be easily adapted to the gait domain as well. We scienti cally de ne and formulate sub-gaits and propose a novel modular training scheme to e ciently learn subtle sub-gait characteristics from the gait domain. Our results show that the proposed model is robust to several uncertainties and yields sig- ni cant recognition performance. Apart from PROCIM, nally we show how a simple component based gait reasoning can be coherently modeled using the re- cently prominent Markov Logic Networks (MLNs) by intuitively fusing imaging, logic and graphs. We have discovered that face and gait domains exhibit interesting similarity map- pings between object entities and their components. We have proposed intuitive probabilistic methods to model these mappings to perform recognition under vari- ous uncertainty elements. Extensive experimental validations justi es the robust- ness of the proposed methods over the state-of-the-art techniques.

    Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

    Get PDF
    This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods

    Real-time Hybrid Locomotion Mode Recognition for Lower-limb Wearable Robots

    Get PDF
    Real-time recognition of locomotion-related activities is a fundamental skill that the controller of lower-limb wearable robots should possess. Subject-specific training and reliance on electromyographic interfaces are the main limitations of existing approaches. This study presents a novel methodology for real-time locomotion mode recognition of locomotion-related activities in lower-limb wearable robotics. A hybrid classifier can distinguish among seven locomotion-related activities. First, a time-based approach classifies between static and dynamical states based on gait kinematics data. Second, an event-based fuzzy logic method triggered by foot pressure sensors operates in a subject-independent fashion on a minimal set of relevant biomechanical features to classify among dynamical modes. The locomotion mode recognition algorithm is implemented on the controller of a portable powered orthosis for hip assistance. An experimental protocol is designed to evaluate the controller performance in an out-of-lab scenario without the need for a subject-specific training. Experiments are conducted on six healthy volunteers performing locomotion-related activities at slow, normal, and fast speeds under the zero-torque and assistive mode of the orthosis. The overall accuracy rate of the controller is 99.4% over more than 10,000 steps, including seamless transitions between different modes. The experimental results show a successful subject-independent performance of the controller for wearable robots assisting locomotion-related activities
    corecore