9,007 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    An Efficient Image Denoising Approach for the Recovery of Impulse Noise

    Full text link
    Image noise is one of the key issues in image processing applications today. The noise will affect the quality of the image and thus degrades the actual information of the image. Visual quality is the prerequisite for many imagery applications such as remote sensing. In recent years, the significance of noise assessment and the recovery of noisy images are increasing. The impulse noise is characterized by replacing a portion of an image's pixel values with random values Such noise can be introduced due to transmission errors. Accordingly, this paper focuses on the effect of visual quality of the image due to impulse noise during the transmission of images. In this paper, a hybrid statistical noise suppression technique has been developed for improving the quality of the impulse noisy color images. We further proved the performance of the proposed image enhancement scheme using the advanced performance metrics

    An Efficient Image Denoising Approach for the Recovery of Impulse Noise

    Get PDF
    Image noise is one of the key issues in image processing applications today. The noise will affect the quality of the image and thus degrades the actual information of the image. Visual quality is the prerequisite for many imagery applications such as remote sensing. In recent years, the significance of noise assessment and the recovery of noisy images are increasing. The impulse noise is characterized by replacing a portion of an image’s pixel values with random values Such noise can be introduced due to transmission errors. Accordingly, this paper focuses on the effect of visual quality of the image due to impulse noise during the transmission of images. In this paper, a hybrid statistical noise suppression technique has been developed for improving the quality of the impulse noisy color images. We further proved the performance of the proposed image enhancement scheme using the advanced performance metrics

    Adaptive fuzzy system for 3-D vision

    Get PDF
    An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller

    Optimization of Classified Satellite Images using DWT and Fuzzy Logic

    Get PDF
    The image taken by a satellite can be enhanced in terms of its resolution based on the interpolation can be obtained by DWT. Using DWT, the image at the input is divided into several sub bands and the speckle noise is also removed. Thereafter, the high-level images and low-level image at the input can be combined, to produce a better image applying IDWT. An intermediate stage for approximating high level is proposed here. The variation in detection approaches for SAR images are done by using image fusion strategy and novel fuzzy clustering algorithm. To retrieve an enhanced image, wavelet fusion directives are considered to combine the wavelet coefficients. A fuzzy C-means algorithm is proposed for identifying the altered and unaltered regions in the combined difference image

    Noise-robust method for image segmentation

    Get PDF
    Segmentation of noisy images is one of the most challenging problems in image analysis and any improvement of segmentation methods can highly influence the performance of many image processing applications. In automated image segmentation, the fuzzy c-means (FCM) clustering has been widely used because of its ability to model uncertainty within the data, applicability to multi-modal data and fairly robust behaviour. However, the standard FCM algorithm does not consider any information about the spatial linage context and is highly sensitive to noise and other imaging artefacts. Considering above mentioned problems, we developed a new FCM-based approach for the noise-robust fuzzy clustering and we present it in this paper. In this new iterative algorithm we incorporated both spatial and feature space information into the similarity measure and the membership function. We considered that spatial information depends on the relative location and features of the neighbouring pixels. The performance of the proposed algorithm is tested on synthetic image with different noise levels and real images. Experimental quantitative and qualitative segmentation results show that our method efficiently preserves the homogeneity of the regions and is more robust to noise than other FCM-based methods

    ART and ARTMAP Neural Networks for Applications: Self-Organizing Learning, Recognition, and Prediction

    Full text link
    ART and ARTMAP neural networks for adaptive recognition and prediction have been applied to a variety of problems. Applications include parts design retrieval at the Boeing Company, automatic mapping from remote sensing satellite measurements, medical database prediction, and robot vision. This chapter features a self-contained introduction to ART and ARTMAP dynamics and a complete algorithm for applications. Computational properties of these networks are illustrated by means of remote sensing and medical database examples. The basic ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups inputs into discrete recognition categories. WTA coding in these networks enables fast learning, that allows the network to encode important rare cases but that may lead to inefficient category proliferation with noisy training inputs. This problem is partially solved by ART-EMAP, which use WTA coding for learning but distributed category representations for test-set prediction. In medical database prediction problems, which often feature inconsistent training input predictions, the ARTMAP-IC network further improves ARTMAP performance with distributed prediction, category instance counting, and a new search algorithm. A recently developed family of ART models (dART and dARTMAP) retains stable coding, recognition, and prediction, but allows arbitrarily distributed category representation during learning as well as performance.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-1-0409, N00014-95-0657
    • …
    corecore