226 research outputs found

    Trusted 5G Vehicular Networks Blockchains and Content-Centric Networking

    Full text link
    [EN] Vehicular communications, though a reality, must continue to evolve to support higher throughput and, above all, ultralow latency to accommodate new use cases, such as the fully autonomous vehicle. Cybersecurity must be assured since the risk of losing control of vehicles if a country were to come under attack is a matter of national security. This article presents the technological enablers that ensure security requirements are met. Under the umbrella of a dedicated network slice, this article proposes the use of content-centric networking (CCN), instead of conventional transmission control protocol/Internet protocol (TCP/IP) routing and permissioned blockchains that allow for the dynamic control of the source reliability, and the integrity and validity of the information exchanged.Ortega Álvarez, V.; Bouchmal, F.; Monserrat Del Río, JF. (2018). Trusted 5G Vehicular Networks Blockchains and Content-Centric Networking. IEEE Vehicular Technology Magazine. 13(2):121-127. https://doi.org/10.1109/MVT.2018.2813422S12112713

    Blockchain Application on the Internet of Vehicles (IoV)

    Full text link
    With the rapid development of the Internet of Things (IoT) and its potential integration with the traditional Vehicular Ad-Hoc Networks (VANETs), we have witnessed the emergence of the Internet of Vehicles (IoV), which promises to seamlessly integrate into smart transportation systems. However, the key characteristics of IoV, such as high-speed mobility and frequent disconnections make it difficult to manage its security and privacy. The Blockchain, as a distributed tamper-resistant ledge, has been proposed as an innovative solution that guarantees privacy-preserving yet secure schemes. In this paper, we review recent literature on the application of blockchain to IoV, in particular, and intelligent transportation systems in general

    Virtualization for Distributed Ledger Technology (vDLT)

    Get PDF
    Recently, with the tremendous development of crypto-currencies, distributed ledger technology (DLT) (e.g., blockchain) has attracted significant attention. The traditional Internet was originally design to to handle the exchange of information. With DLT, we will have the Internet of value. Although DLT has great potential to create new foundations for our economic and social systems, the existing DLT has a number of drawbacks (e.g., scalability) that prevent it from being used as a generic platform for distributed

    FOG-oriented Joint Computing and Networking: the GAUChO Project Vision

    Get PDF
    This paper presents a novel architectural principle for distributed and heterogeneous systems integrating Fog Computing and Networking approaches, which has been proposed within the “Green Adaptive Fog Computing and Networking Architecture” (GAUChO) project, funded by the MIUR Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2015 - grant 2015YPXH4W-004. In particular a modular and flexible platform has been designed and developed, supporting low-latency and energy-efficiency applications as well as security, self-adaptation, and spectrum efficiency by means of a strict collaboration among devices. Specifically, the focus here is on the design of an integrated protocol architecture supporting mobile Fog-oriented services, and the developed Fog computing testbeds

    Distributed Ledger Technologies for Network Slicing: A Survey

    Get PDF
    Network slicing is one of the fundamental tenets of Fifth Generation (5G)/Sixth Generation (6G) networks. Deploying slices requires end-to-end (E2E) control of services and the underlying resources in a network substrate featuring an increasing number of stakeholders. Beyond the technical difficulties this entails, there is a long list of administrative negotiations among parties that do not necessarily trust each other, which often requires costly manual processes, including the legal construction of neutral entities. In this context, Blockchain comes to the rescue by bringing its decentralized yet immutable and auditable lemdger, which has a high potential in the telco arena. In this sense, it may help to automate some of the above costly processes. There have been some proposals in this direction that are applied to various problems among different stakeholders. This paper aims at structuring this field of knowledge by, first, providing introductions to network slicing and blockchain technologies. Then, state-of-the-art is presented through a global architecture that aggregates the various proposals into a coherent whole while showing the motivation behind applying Blockchain and smart contracts to network slicing. And finally, some limitations of current work, future challenges and research directions are also presented.This work was supported in part by the Spanish Formación Personal Investigador (FPI) under Grant PRE2018-086061, in part by the TRUE5G under Grant PID2019-108713RB-C52/AEI/10.13039/501100011033, and in part by the European Union (EU) H2020 The 5G Infrastructure Public Private Partnership (5GPPP) 5Growth Project 856709.Publicad

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    Robust, Resilient and Reliable Architecture for V2X Communication

    Get PDF
    The new developments in mobile edge computing (MEC) and vehicle-to-everything (V2X) communications has positioned 5G and beyond in a strong position to answer the market need towards future emerging intelligent transportation systems and smart city applications. The major attractive features of V2X communication is the inherent ability to adapt to any type of network, device, or data, and to ensure robustness, resilience and reliability of the network, which is challenging to realize. In this work, we propose to drive these further these features by proposing a novel robust, resilient and reliable architecture for V2X communication based on harnessing MEC and blockchain technology. A three stage computing service is proposed. Firstly, a hierarchcial computing architecture is deployed spanning over the vehicular network that constitutes cloud computing (CC), edge computing (EC), fog computing (FC) nodes. The resources and data bases can migrate from the high capacity cloud services (furthest away from the individual node of the network) to the edge (medium) and low level fog node, according to computing service requirements. Secondly, the resource allocation filters the data according to its significance, and rank the nodes according to their usability, and selects the network technology according to their physical channel characteristics. Thirdly, we propose a blockchain-based transaction service that ensures reliability. We discussed two use cases for experimental analysis, plug- in electric vehicles in smart grid scenarios, and massive IoT data services for autonomous cars. The results show that car connectivity prediction is accurate 98% of the times, where 92% more data blocks are added using micro-blockchain solution compared to the public blockchain, where it is able to reduce the time to sign and compute the proof-of-work (PoW), and deliver a low-overhead Proof-of-Stake (PoS) consensus mechanism. This approach can be considered a strong candidate architecture for future V2X, and with more general application for everything- to-everything (X2X) communications

    Introducing the new paradigm of Social Dispersed Computing: Applications, Technologies and Challenges

    Full text link
    [EN] If last decade viewed computational services as a utility then surely this decade has transformed computation into a commodity. Computation is now progressively integrated into the physical networks in a seamless way that enables cyber-physical systems (CPS) and the Internet of Things (IoT) meet their latency requirements. Similar to the concept of ¿platform as a service¿ or ¿software as a service¿, both cloudlets and fog computing have found their own use cases. Edge devices (that we call end or user devices for disambiguation) play the role of personal computers, dedicated to a user and to a set of correlated applications. In this new scenario, the boundaries between the network node, the sensor, and the actuator are blurring, driven primarily by the computation power of IoT nodes like single board computers and the smartphones. The bigger data generated in this type of networks needs clever, scalable, and possibly decentralized computing solutions that can scale independently as required. Any node can be seen as part of a graph, with the capacity to serve as a computing or network router node, or both. Complex applications can possibly be distributed over this graph or network of nodes to improve the overall performance like the amount of data processed over time. In this paper, we identify this new computing paradigm that we call Social Dispersed Computing, analyzing key themes in it that includes a new outlook on its relation to agent based applications. We architect this new paradigm by providing supportive application examples that include next generation electrical energy distribution networks, next generation mobility services for transportation, and applications for distributed analysis and identification of non-recurring traffic congestion in cities. The paper analyzes the existing computing paradigms (e.g., cloud, fog, edge, mobile edge, social, etc.), solving the ambiguity of their definitions; and analyzes and discusses the relevant foundational software technologies, the remaining challenges, and research opportunities.Garcia Valls, MS.; Dubey, A.; Botti, V. (2018). Introducing the new paradigm of Social Dispersed Computing: Applications, Technologies and Challenges. Journal of Systems Architecture. 91:83-102. https://doi.org/10.1016/j.sysarc.2018.05.007S831029

    Blockchain-enabled resource management and sharing for 6G communications

    Get PDF
    The sixth-generation (6G) network must provide performance superior to previous generations to meet the requirements of emerging services and applications, such as multi-gigabit transmission rate, even higher reliability, and sub 1 ms latency and ubiquitous connection for the Internet of Everything (IoE). However, with the scarcity of spectrum resources, efficient resource management and sharing are crucial to achieving all these ambitious requirements. One possible technology to achieve all this is the blockchain. Because of its inherent properties, the blockchain has recently gained an important position, which is of great significance to 6G network and other networks. In particular, the integration of the blockchain in 6G will enable the network to monitor and manage resource utilization and sharing efficiently. Hence, in this paper, we discuss the potentials of the blockchain for resource management and sharing in 6G using multiple application scenarios, namely, Internet of things, device-to-device communications, network slicing, and inter-domain blockchain ecosystems
    corecore