183 research outputs found

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within

    Simulated annealing based datapath synthesis

    Get PDF

    Hardware Accelerators for Animated Ray Tracing

    Get PDF
    Future graphics processors are likely to incorporate hardware accelerators for real-time ray tracing, in order to render increasingly complex lighting effects in interactive applications. However, ray tracing poses difficulties when drawing scenes with dynamic content, such as animated characters and objects. In dynamic scenes, the spatial datastructures used to accelerate ray tracing are invalidated on each animation frame, and need to be rapidly updated. Tree update is a complex subtask in its own right, and becomes highly expensive in complex scenes. Both ray tracing and tree update are highly memory-intensive tasks, and rendering systems are increasingly bandwidth-limited, so research on accelerator hardware has focused on architectural techniques to optimize away off-chip memory traffic. Dynamic scene support is further complicated by the recent introduction of compressed trees, which use low-precision numbers for storage and computation. Such compression reduces both the arithmetic and memory bandwidth cost of ray tracing, but adds to the complexity of tree update.This thesis proposes methods to cope with dynamic scenes in hardware-accelerated ray tracing, with focus on reducing traffic to external memory. Firstly, a hardware architecture is designed for linear bounding volume hierarchy construction, an algorithm which is a basic building block in most state-of-the-art software tree builders. The algorithm is rearranged into a streaming form which reduces traffic to one-third of software implementations of the same algorithm. Secondly, an algorithm is proposed for compressing bounding volume hierarchies in a streaming manner as they are output from a hardware builder, instead of performing compression as a postprocessing pass. As a result, with the proposed method, compression reduces the overall cost of tree update rather than increasing it. The last main contribution of this thesis is an evaluation of shallow bounding volume hierarchies, common in software ray tracing, for use in hardware pipelines. These are found to be more energy-efficient than binary hierarchies. The results in this thesis both confirm that dynamic scene support may become a bottleneck in real time ray tracing, and add to the state of the art on tree update in terms of energy-efficiency, as well as the complexity of scenes that can be handled in real time on resource-constrained platforms

    Energy Efficient and Error Resilient Neuromorphic Computing in VLSI

    Get PDF
    Realization of the conventional Von Neumann architecture faces increasing challenges due to growing process variations, device reliability and power consumption. As an appealing architectural solution, brain-inspired neuromorphic computing has drawn a great deal of research interest due to its potential improved scalability and power efficiency, and better suitability in processing complex tasks. Moreover, inherit error resilience in neuromorphic computing allows remarkable power and energy savings by exploiting approximate computing. This dissertation focuses on a scalable and energy efficient neurocomputing architecture which leverages emerging memristor nanodevices and a novel approximate arithmetic for cognitive computing. First, brain-inspired digital neuromorphic processor (DNP) architecture with memristive synaptic crossbar is presented for large scale spiking neural networks. We leverage memristor nanodevices to build an N ×N crossbar array to store not only multibit synaptic weight values but also the network configuration data with significantly reduced area cost. Additionally, the crossbar array is accessible both column- and row-wise to significantly expedite the synaptic weight update process for on-chip learning. The proposed digital pulse width modulator (PWM) readily creates a binary pulse with various durations to read and write the multilevel memristors with low cost. Our design integrates N digital leaky integrate-and-fire (LIF) silicon neurons to mimic their biological counterparts and the respective on-chip learning circuits for implementing spike timing dependent plasticity (STDP) learning rules. The proposed column based analog-to-digital conversion (ADC) scheme accumulates the pre-synaptic weights of a neuron efficiently and reduces silicon area by using only one shared arithmetic unit for processing LIF operations of all N neurons. With 256 silicon neurons, the learning circuits and 64K synapses, the power dissipation and area of our design are evaluated as 6.45 mW and 1.86 mm2, respectively, in a 90 nm CMOS technology. Furthermore, arithmetic computations contribute significantly to the overall processing time and power of the proposed architecture. In particular, addition and comparison operations represent 88.5% and 42.9% of processing time and power for digital LIF computation, respectively. Hence, by exploiting the built-in resilience of the presented neuromorphic architecture, we propose novel approximate adder and comparator designs to significantly reduce energy consumption with a very low er- ror rate. The significantly improved error rate and critical path delay stem from a novel carry prediction technique that leverages the information from less significant input bits in a parallel manner. An error magnitude reduction scheme is proposed to further reduce amount of error once detected with low cost in the proposed adder design. Implemented in a commercial 90 nm CMOS process, it is shown that the proposed adder is up to 2.4× faster and 43% more energy efficient over traditional adders while having an error rate of only 0.18%. Additionally, the proposed com- parator achieves an error rate of less than 0.1% and an energy reduction of up to 4.9× compared to the conventional ones. The proposed arithmetic has been adopted in a VLSI-based neuromorphic character recognition chip using unsupervised learning. The approximation errors of the proposed arithmetic units have been shown to have negligible impacts on the training process. Moreover, the energy saving of up to 66.5% over traditional arithmetic units is achieved for the neuromorphic chip with scaled supply levels

    Knowledge Based Systems: A Critical Survey of Major Concepts, Issues, and Techniques

    Get PDF
    This Working Paper Series entry presents a detailed survey of knowledge based systems. After being in a relatively dormant state for many years, only recently is Artificial Intelligence (AI) - that branch of computer science that attempts to have machines emulate intelligent behavior - accomplishing practical results. Most of these results can be attributed to the design and use of Knowledge-Based Systems, KBSs (or ecpert systems) - problem solving computer programs that can reach a level of performance comparable to that of a human expert in some specialized problem domain. These systems can act as a consultant for various requirements like medical diagnosis, military threat analysis, project risk assessment, etc. These systems possess knowledge to enable them to make intelligent desisions. They are, however, not meant to replace the human specialists in any particular domain. A critical survey of recent work in interactive KBSs is reported. A case study (MYCIN) of a KBS, a list of existing KBSs, and an introduction to the Japanese Fifth Generation Computer Project are provided as appendices. Finally, an extensive set of KBS-related references is provided at the end of the report

    Dynamic task scheduling and binding for many-core systems through stream rewriting

    Get PDF
    This thesis proposes a novel model of computation, called stream rewriting, for the specification and implementation of highly concurrent applications. Basically, the active tasks of an application and their dependencies are encoded as a token stream, which is iteratively modified by a set of rewriting rules at runtime. In order to estimate the performance and scalability of stream rewriting, a large number of experiments have been evaluated on many-core systems and the task management has been implemented in software and hardware.In dieser Dissertation wurde Stream Rewriting als eine neue Methode entwickelt, um Anwendungen mit einer großen Anzahl von dynamischen Tasks zu beschreiben und effizient zur Laufzeit verwalten zu können. Dabei werden die aktiven Tasks in einem Datenstrom verpackt, der zur Laufzeit durch wiederholtes Suchen und Ersetzen umgeschrieben wird. Um die Performance und Skalierbarkeit zu bestimmen, wurde eine Vielzahl von Experimenten mit Many-Core-Systemen durchgeführt und die Verwaltung von Tasks über Stream Rewriting in Software und Hardware implementiert

    Toatie : functional hardware description with dependent types

    Get PDF
    Describing correct circuits remains a tall order, despite four decades of evolution in Hardware Description Languages (HDLs). Many enticing circuit architectures require recursive structures or complex compile-time computation — two patterns that prove difficult to capture in traditional HDLs. In a signal processing context, the Fast FIR Algorithm (FFA) structure for efficient parallel filtering proves to be naturally recursive, and most Multiple Constant Multiplication (MCM) blocks decompose multiplications into graphs of simple shifts and adds using demanding compile time computation. Generalised versions of both remain mostly in academic folklore. The implementations which do exist are often ad hoc circuit generators, written in software languages. These pose challenges for verification and are resistant to composition. Embedded functional HDLs, that represent circuits as data, allow for these descriptions at the cost of forcing the designer to work at the gate-level. A promising alternative is to use a stand-alone compiler, representing circuits as plain functions, exemplified by the CλaSH HDL. This, however, raises new challenges in capturing a circuit’s staging — which expressions in the single language should be reduced during compile-time elaboration, and which should remain in the circuit’s run-time? To better reflect the physical separation between circuit phases, this work proposes a new functional HDL (representing circuits as functions) with first-class staging constructs. Orthogonal to this, there are also long-standing challenges in the verification of parameterised circuit families. Industry surveys have consistently reported that only a slim minority of FPGA projects reach production without non-trivial bugs. While a healthy growth in the adoption of automatic formal methods is also reported, the majority of testing remains dynamic — presenting difficulties for testing entire circuit families at once. This research offers an alternative verification methodology via the combination of dependent types and automatic synthesis of user-defined data types. Given precise enough types for synthesisable data, this environment can be used to develop circuit families with full functional verification in a correct-by-construction fashion. This approach allows for verification of entire circuit families (not just one concrete member) and side-steps the state-space explosion of model checking methods. Beyond the existing work, this research offers synthesis of combinatorial circuits — not just a software model of their behaviour. This additional step requires careful consideration of staging, erasure & irrelevance, deriving bit representations of user-defined data types, and a new synthesis scheme. This thesis contributes steps towards HDLs with sufficient expressivity for awkward, combinatorial signal processing structures, allowing for a correct-by-construction approach, and a prototype compiler for netlist synthesis.Describing correct circuits remains a tall order, despite four decades of evolution in Hardware Description Languages (HDLs). Many enticing circuit architectures require recursive structures or complex compile-time computation — two patterns that prove difficult to capture in traditional HDLs. In a signal processing context, the Fast FIR Algorithm (FFA) structure for efficient parallel filtering proves to be naturally recursive, and most Multiple Constant Multiplication (MCM) blocks decompose multiplications into graphs of simple shifts and adds using demanding compile time computation. Generalised versions of both remain mostly in academic folklore. The implementations which do exist are often ad hoc circuit generators, written in software languages. These pose challenges for verification and are resistant to composition. Embedded functional HDLs, that represent circuits as data, allow for these descriptions at the cost of forcing the designer to work at the gate-level. A promising alternative is to use a stand-alone compiler, representing circuits as plain functions, exemplified by the CλaSH HDL. This, however, raises new challenges in capturing a circuit’s staging — which expressions in the single language should be reduced during compile-time elaboration, and which should remain in the circuit’s run-time? To better reflect the physical separation between circuit phases, this work proposes a new functional HDL (representing circuits as functions) with first-class staging constructs. Orthogonal to this, there are also long-standing challenges in the verification of parameterised circuit families. Industry surveys have consistently reported that only a slim minority of FPGA projects reach production without non-trivial bugs. While a healthy growth in the adoption of automatic formal methods is also reported, the majority of testing remains dynamic — presenting difficulties for testing entire circuit families at once. This research offers an alternative verification methodology via the combination of dependent types and automatic synthesis of user-defined data types. Given precise enough types for synthesisable data, this environment can be used to develop circuit families with full functional verification in a correct-by-construction fashion. This approach allows for verification of entire circuit families (not just one concrete member) and side-steps the state-space explosion of model checking methods. Beyond the existing work, this research offers synthesis of combinatorial circuits — not just a software model of their behaviour. This additional step requires careful consideration of staging, erasure & irrelevance, deriving bit representations of user-defined data types, and a new synthesis scheme. This thesis contributes steps towards HDLs with sufficient expressivity for awkward, combinatorial signal processing structures, allowing for a correct-by-construction approach, and a prototype compiler for netlist synthesis
    corecore