444 research outputs found

    Weighted structure tensor total variation for image denoising

    Full text link
    Based on the variational framework of the image denoising problem, we introduce a novel image denoising regularizer that combines anisotropic total variation model (ATV) and structure tensor total variation model (STV) in this paper. The model can effectively capture the first-order information of the image and maintain local features during the denoising process by applying the matrix weighting operator proposed in the ATV model to the patch-based Jacobian matrix in the STV model. Denoising experiments on grayscale and RGB color images demonstrate that the suggested model can produce better restoration quality in comparison to other well-known methods based on total-variation-based models and the STV model

    Continuum-kinematics-inspired peridynamics. Mechanical problems

    Get PDF
    The main objective of this contribution is to develop a novel continuum-kinematics-inspired approach for peridynamics (PD), and to revisit PD’s thermodynamic foundations. We distinguish between three types of interactions, namely, one-neighbour interactions, two-neighbour interactions and three-neighbour interactions. While one-neighbour interactions are equivalent to the bond-based interactions of the original PD formalism, two- and three-neighbour interactions are fundamentally different to state-based interactions in that the basic elements of continuum kinematics are preserved exactly. In addition, we propose that an externally prescribed traction on the boundary of the continuum body emerges naturally and need not vanish. This is in contrast to, but does not necessarily violate, standard PD. We investigate the consequences of the angular momentum balance and provide a set of appropriate arguments for the interactions accordingly. Furthermore, we elaborate on thermodynamic restrictions on the interaction energies and derive thermodynamically-consistent constitutive laws through a Coleman–Noll-like procedure

    A High-Order Numerical Method for the Nonlinear Helmholtz Equation in Multidimensional Layered Media

    Full text link
    We present a novel computational methodology for solving the scalar nonlinear Helmholtz equation (NLH) that governs the propagation of laser light in Kerr dielectrics. The methodology addresses two well-known challenges in nonlinear optics: Singular behavior of solutions when the scattering in the medium is assumed predominantly forward (paraxial regime), and the presence of discontinuities in the % linear and nonlinear optical properties of the medium. Specifically, we consider a slab of nonlinear material which may be grated in the direction of propagation and which is immersed in a linear medium as a whole. The key components of the methodology are a semi-compact high-order finite-difference scheme that maintains accuracy across the discontinuities and enables sub-wavelength resolution on large domains at a tolerable cost, a nonlocal two-way artificial boundary condition (ABC) that simultaneously facilitates the reflectionless propagation of the outgoing waves and forward propagation of the given incoming waves, and a nonlinear solver based on Newton's method. The proposed methodology combines and substantially extends the capabilities of our previous techniques built for 1Dand for multi-D. It facilitates a direct numerical study of nonparaxial propagation and goes well beyond the approaches in the literature based on the "augmented" paraxial models. In particular, it provides the first ever evidence that the singularity of the solution indeed disappears in the scalar NLH model that includes the nonparaxial effects. It also enables simulation of the wavelength-width spatial solitons, as well as of the counter-propagating solitons.Comment: 40 pages, 10 figure

    Visco-potential free-surface flows and long wave modelling

    Get PDF
    In a recent study [DutykhDias2007] we presented a novel visco-potential free surface flows formulation. The governing equations contain local and nonlocal dissipative terms. From physical point of view, local dissipation terms come from molecular viscosity but in practical computations, rather eddy viscosity should be used. On the other hand, nonlocal dissipative term represents a correction due to the presence of a bottom boundary layer. Using the standard procedure of Boussinesq equations derivation, we come to nonlocal long wave equations. In this article we analyse dispersion relation properties of proposed models. The effect of nonlocal term on solitary and linear progressive waves attenuation is investigated. Finally, we present some computations with viscous Boussinesq equations solved by a Fourier type spectral method.Comment: 29 pages, 13 figures. Some figures were updated. Revised version for European Journal of Mechanics B/Fluids. Other author's papers can be downloaded from http://www.lama.univ-savoie.fr/~dutyk

    Variational image denoising with adaptive constraint sets

    Get PDF
    Abstract. We propose a generalization of the total variation (TV) minimization method proposed by Rudin, Osher and Fatemi. This generalization allows for adaptive regularization, which depends on the minimizer itself. Existence theory is provided in the framework of quasi-variational inequalities. We demonstrate the usability of our approach by considering applications for image and movie denoising
    • …
    corecore