110,615 research outputs found

    A Hybrid Model to Extend Vehicular Intercommunication V2V through D2D Architecture

    Full text link
    In the recent years, many solutions for Vehicle to Vehicle (V2V) communication were proposed to overcome failure problems (also known as dead ends). This paper proposes a novel framework for V2V failure recovery using Device-to-Device (D2D) communications. Based on the unified Intelligent Transportation Systems (ITS) architecture, LTE-based D2D mechanisms can improve V2V dead ends failure recovery delays. This new paradigm of hybrid V2V-D2D communications overcomes the limitations of traditional V2V routing techniques. According to NS2 simulation results, the proposed hybrid model decreases the end to end delay (E2E) of messages delivery. A complete comparison of different D2D use cases (best & worst scenarios) is presented to show the enhancements brought by our solution compared to traditional V2V techniques.Comment: 6 page

    Hybrid intelligent machine systems : design, modeling and control

    Get PDF
    To further improve performances of machine systems, mechatronics offers some opportunities. Traditionally, mechatronics deals with how to integrate mechanics and electronics without a systematic approach. This thesis generalizes the concept of mechatronics into a new concept called hybrid intelligent machine system. A hybrid intelligent machine system is a system where two or more elements combine to play at least one of the roles such as sensor, actuator, or control mechanism, and contribute to the system behaviour. The common feature with the hybrid intelligent machine system is thus the presence of two or more entities responsible for the system behaviour with each having its different strength complementary to the others. The hybrid intelligent machine system is further viewed from the system’s structure, behaviour, function, and principle, which has led to the distinction of (1) the hybrid actuation system, (2) the hybrid motion system (mechanism), and (3) the hybrid control system. This thesis describes a comprehensive study on three hybrid intelligent machine systems. In the case of the hybrid actuation system, the study has developed a control method for the “true” hybrid actuation configuration in which the constant velocity motor is not “mimicked” by the servomotor which is treated in literature. In the case of the hybrid motion system, the study has resulted in a novel mechanism structure based on the compliant mechanism which allows the micro- and macro-motions to be integrated within a common framework. It should be noted that the existing designs in literature all take a serial structure for micro- and macro-motions. In the case of hybrid control system, a novel family of control laws is developed, which is primarily based on the iterative learning of the previous driving torque (as a feedforward part) and various feedback control laws. This new family of control laws is rooted in the computer-torque-control (CTC) law with an off-line learned torque in replacement of an analytically formulated torque in the forward part of the CTC law. This thesis also presents the verification of these novel developments by both simulation and experiments. Simulation studies are presented for the hybrid actuation system and the hybrid motion system while experimental studies are carried out for the hybrid control system

    Vehicular communication management framework : a flexible hybrid connectivity platform for CCAM services

    Get PDF
    In the upcoming decade and beyond, the Cooperative, Connected and Automated Mobility (CCAM) initiative will play a huge role in increasing road safety, traffic efficiency and comfort of driving in Europe. While several individual vehicular wireless communication technologies exist, there is still a lack of real flexible and modular platforms that can support the need for hybrid communication. In this paper, we propose a novel vehicular communication management framework (CAMINO), which incorporates flexible support for both short-range direct and long-range cellular technologies and offers built-in Cooperative Intelligent Transport Systems' (C-ITS) services for experimental validation in real-life settings. Moreover, integration with vehicle and infrastructure sensors/actuators and external services is enabled using a Distributed Uniform Streaming (DUST) framework. The framework is implemented and evaluated in the Smart Highway test site for two targeted use cases, proofing the functional operation in realistic environments. The flexibility and the modular architecture of the hybrid CAMINO framework offers valuable research potential in the field of vehicular communications and CCAM services and can enable cross-technology vehicular connectivity

    Design and development of a hybrid control system for flexible manufacturing : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Manufacturing and Industrial Technology at Massey University

    Get PDF
    Irregular Pagination MisnumberedFlexible Manufacturing Systems (FMS) appeared upon the manufacturing scene in the early 1970s, installations presently number in the thousands. However, many current installations in fact lack flexibility, do not operate in real-time and are prohibitively expensive. Therefore there are obvious benefits to be gained from making improvements to existing flexible manufacturing systems. Research conducted for this thesis focused on two major areas. The implementation of the FMS control system on a SCADA package and the development of an auction based scheduling system. This entailed the development of a hybrid control model composed of three distinct layers; factory, cell and intelligent entity. Key portions of both the factory and cell controllers were then implemented so as to create a minimal system. This has been completed to the point where the auction algorithm has been implemented and tested in an appropriate framework. In achieving the goals mentioned above a number of novel design concepts have been utilised. There are two which are most important, these are the use of low cost modules for the construction of a flexible co-operative manufacturing system, and the ability of this system to operate in a physically distributed area via a Local Area Network. Meaning it is inherently adaptable and resistant to failure. These novel design concepts were ingrained throughout the entire three layered control model. It is felt that this research has succeeded in demonstrating the possibility of implementing a FMS control system on a low cost SCADA package using low cost software and computing elements. The ability of the distributed, auction-based approach to operate successfully within this system, has also been demonstrated through simulation

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Optimal analog wavelet bases construction using hybrid optimization algorithm

    Get PDF
    An approach for the construction of optimal analog wavelet bases is presented. First, the definition of an analog wavelet is given. Based on the definition and the least-squares error criterion, a general framework for designing optimal analog wavelet bases is established, which is one of difficult nonlinear constrained optimization problems. Then, to solve this problem, a hybrid algorithm by combining chaotic map particle swarm optimization (CPSO) with local sequential quadratic programming (SQP) is proposed. CPSO is an improved PSO in which the saw tooth chaotic map is used to raise its global search ability. CPSO is a global optimizer to search the estimates of the global solution, while the SQP is employed for the local search and refining the estimates. Benefiting from good global search ability of CPSO and powerful local search ability of SQP, a high-precision global optimum in this problem can be gained. Finally, a series of optimal analog wavelet bases are constructed using the hybrid algorithm. The proposed method is tested for various wavelet bases and the improved performance is compared with previous works.Peer reviewedFinal Published versio
    corecore