13 research outputs found

    Variable-grasping-mode underactuated soft gripper with environmental contact-based operation

    Get PDF
    A novel robotic gripper with soft surfaces and underactuated joints was proposed. The soft surface was fabricated from a deformable rubber bag filled with incompressible fluid and a microgripper inside the fluid. A ratchet was installed at the underactuated joint so that the joint\u27s rotation caused by contact with an environment, such as a supporting surface, can be preserved, and the actions of scooping and enveloping an object are realized. With one actuator, the gripper realized three modes, i.e., parallel gripper, pinching, and enveloping. The range of graspable objects was wide and included soft, rigid, deformable, fragile, small (boundary length less than 30 mm), large (more than 80 mm long), thin (less than 0.5 mm), and heavy (more than 3 kg) objects.INSPEC Accession Number: 1671251

    Adaptive and reconfigurable robotic gripper hands with a meso-scale gripping range

    Get PDF
    Grippers and robotic hands are essential and important end-effectors of robotic manipulators. Developing a gripper hand that can grasp a large variety of objects precisely and stably is still an aspiration even though research in this area has been carried out for several decades. This thesis provides a development approach and a series of gripper hands which can bridge the gap between micro-gripper and macro-gripper by extending the gripping range to the mesoscopic scale (meso-scale). Reconfigurable topology and variable mobility of the design offer versatility and adaptability for the changing environment and demands. By investigating human grasping behaviours and the unique structures of human hand, a CFB-based finger joint for anthropomorphic finger is developed to mimic a human finger with a large grasping range. The centrodes of CFB mechanism are explored and a contact-aided CFB mechanism is developed to increase stiffness of finger joints. An integrated gripper structure comprising cross four-bar (CFB) and remote-centre-of-motion (RCM) mechanisms is developed to mimic key functionalities of human hand. Kinematics and kinetostatic analyses of the CFB mechanism for multimode gripping are conducted to achieve passive-adjusting motion. A novel RCM-based finger with angular, parallel and underactuated motion is invented. Kinematics and stable gripping analyses of the RCM-based multi-motion finger are also investigated. The integrated design with CFB and RCM mechanisms provides a novel concept of a multi-mode gripper that aims to tackle the challenge of changing over for various sizes of objects gripping in mesoscopic scale range. Based on the novel designed mechanisms and design philosophy, a class of gripper hands in terms of adaptive meso-grippers, power-precision grippers and reconfigurable hands are developed. The novel features of the gripper hands are one degree of freedom (DoF), self-adaptive, reconfigurable and multi-mode. Prototypes are manufactured by 3D printing and the grasping abilities are tested to verify the design approach.EPSR

    Variable-Grasping-Mode Underactuated Soft Gripper With Environmental Contact-Based Operation

    Full text link

    Innovative robot hand designs of reduced complexity for dexterous manipulation

    Get PDF
    This thesis investigates the mechanical design of robot hands to sensibly reduce the system complexity in terms of the number of actuators and sensors, and control needs for performing grasping and in-hand manipulations of unknown objects. Human hands are known to be the most complex, versatile, dexterous manipulators in nature, from being able to operate sophisticated surgery to carry out a wide variety of daily activity tasks (e.g. preparing food, changing cloths, playing instruments, to name some). However, the understanding of why human hands can perform such fascinating tasks still eludes complete comprehension. Since at least the end of the sixteenth century, scientists and engineers have tried to match the sensory and motor functions of the human hand. As a result, many contemporary humanoid and anthropomorphic robot hands have been developed to closely replicate the appearance and dexterity of human hands, in many cases using sophisticated designs that integrate multiple sensors and actuators---which make them prone to error and difficult to operate and control, particularly under uncertainty. In recent years, several simplification approaches and solutions have been proposed to develop more effective and reliable dexterous robot hands. These techniques, which have been based on using underactuated mechanical designs, kinematic synergies, or compliant materials, to name some, have opened up new ways to integrate hardware enhancements to facilitate grasping and dexterous manipulation control and improve reliability and robustness. Following this line of thought, this thesis studies four robot hand hardware aspects for enhancing grasping and manipulation, with a particular focus on dexterous in-hand manipulation. Namely: i) the use of passive soft fingertips; ii) the use of rigid and soft active surfaces in robot fingers; iii) the use of robot hand topologies to create particular in-hand manipulation trajectories; and iv) the decoupling of grasping and in-hand manipulation by introducing a reconfigurable palm. In summary, the findings from this thesis provide important notions for understanding the significance of mechanical and hardware elements in the performance and control of human manipulation. These findings show great potential in developing robust, easily programmable, and economically viable robot hands capable of performing dexterous manipulations under uncertainty, while exhibiting a valuable subset of functions of the human hand.Open Acces

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    A Methodology Towards Comprehensive Evaluation of Shape Memory Alloy Actuators for Prosthetic Finger Design

    Get PDF
    Presently, DC motors are the actuator of choice within intelligent upper limb prostheses. However, the weight and dimensions associated with suitable DC motors are not always compatible with the geometric restrictions of a prosthetic hand; reducing available degrees of freedom and ultimately rendering the prosthesis uncomfortable for the end-user. As a result, the search is on-going to find a more appropriate actuation solution that is lightweight, noiseless, strong and cheap. Shape memory alloy (SMA) actuators offer the potential to meet these requirements. To date, no viable upper limb prosthesis using SMA actuators has been developed. The primary reasons lie in low force generation as a result of unsuitable actuator designs, and significant difficulties in control owing to the highly nonlinear response of SMAs when subjected to joule heating. This work presents a novel and comprehensive methodology to facilitate evaluation of SMA bundle actuators for prosthetic finger design. SMA bundle actuators feature multiple SMA wires in parallel. This allows for increased force generation without compromising on dynamic performance. The SMA bundle actuator is tasked with reproducing the typical forces and contractions associated with the human finger in a prosthetic finger design, whilst maintaining a high degree of energy efficiency. A novel approach to SMA control is employed, whereby an adaptive controller is developed and tuned using the underlying thermo-mechanical principles of operation of SMA wires. A mathematical simulation of the kinematics and dynamics of motion provides a platform for designing, optimizing and evaluating suitable SMA bundle actuators offline. This significantly reduces the time and cost involved in implementing an appropriate actuation solution. Experimental results show iii that the performance of SMA bundle actuators is favourable for prosthesis applications. Phalangeal tip forces are shown to improve significantly through bundling of SMA wire actuators, while dynamic performance is maintained owing to the design and implementation of the selected control strategy. The work is intended to serve as a roadmap for fellow researchers seeking to design, implement and control SMA bundle actuators in a prosthesis design. Furthermore, the methodology can also be adopted to serve as a guide in the evaluation of other non-conventional actuation technologies in alternative applications

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Advancing Musculoskeletal Robot Design for Dynamic and Energy-Efficient Bipedal Locomotion

    Get PDF
    Achieving bipedal robot locomotion performance that approaches human performance is a challenging research topic in the field of humanoid robotics, requiring interdisciplinary expertise from various disciplines, including neuroscience and biomechanics. Despite the remarkable results demonstrated by current humanoid robots---they can walk, stand, turn, climb stairs, carry a load, push a cart---the versatility, stability, and energy efficiency of humans have not yet been achieved. However, with robots entering our lives, whether in the workplace, in clinics, or in normal household environments, such improvements are increasingly important. The current state of research in bipedal robot locomotion reveals that several groups have continuously demonstrated enhanced locomotion performance of the developed robots. But each of these groups has taken a unilateral approach and placed the focus on only one aspect, in order to achieve enhanced movement abilities;---for instance, the motion control and postural stability or the mechanical design. The neural and mechanical systems in human and animal locomotion, however, are strongly coupled and should therefore not be treated separately. Human-inspired musculoskeletal design of bipedal robots offers great potential for enhanced dynamic and energy-efficient locomotion but also imposes major challenges for motion planning and control. In this thesis, we first present a detailed review of the problems related to achieving enhanced dynamic and energy-efficient bipedal locomotion, from various important perspectives, and examine the essential properties of the human locomotory apparatus. Subsequently, existing insights and approaches from biomechanics, to understand the neuromechanical motion apparatus, and from robotics, to develop more human-like robots that can move in our environment, are discussed in detail. These thorough investigations of the interrelated essential design decisions are used to develop a novel design for a musculoskeletal bipedal robot, BioBiped1, such that, in the long term, it is capable of realizing dynamic hopping, running, and walking motions. The BioBiped1 robot features a highly compliant tendon-driven actuation system that mimics key functionalities of the human lower limb system. In experiments, BioBiped1's locomotor function for the envisioned gaits is validated globally. It is shown that the robot is able to rebound passively, store and release energy, and actively push off from the ground. The proof of concept of BioBiped1's locomotor function, however, marks only the starting point for our investigations, since this novel design concept opens up a number of questions regarding the required design complexity for the envisioned motions and the appropriate motion generation and control concept. For this purpose, a simulator specifically designed for the requirements of musculoskeletally actuated robotic systems, including sufficiently realistic ground reaction forces, is developed. It relies on object-oriented design and is based on a numerical solver, without model switching, to enable the analysis of impact peak forces and the simulation of flight phases. The developed library also contains the models of the actuated and passive mono- and biarticular elastic tendons and a penalty-based compliant contact model with nonlinear damping, to incorporate the collision, friction, and stiction forces occurring during ground contact. Using these components, the full multibody system (MBS) dynamics model is developed. To ensure a sufficiently similar behavior of the simulated and the real musculoskeletal robot, various measurements and parameter identifications for sub-models are performed. Finally, it is shown that the simulation model behaves similarly to the real robot platform. The intelligent combination of actuated and passive mono- and biarticular tendons, imitating important human muscle groups, offers tremendous potential for improved locomotion performance but also requires a sophisticated concept for motion control of the robot. Therefore, a further contribution of this thesis is the development of a centralized, nonlinear model-based method for motion generation and control that utilizes the derived detailed dynamics models of the implemented actuators. The concept is used to realize both computer-generated hopping and human jogging motions. Additionally, the problem of appropriate motor-gear unit selection prior to the robot's construction is tackled, using this method. The thesis concludes with a number of simulation studies in which several leg actuation designs are examined for their optimality with regard to systematically selected performance criteria. Furthermore, earlier paradoxical biomechanical findings about biarticular muscles in running are presented and, for the first time, investigated by detailed simulation of the motion dynamics. Exploring the Lombard paradox, a novel reduced and energy-efficient locomotion model without knee extensor has been simulated successfully. The models and methods developed within this thesis, as well as the insights gained, are already being employed to develop future prototypes. In particular, the optimal dimensioning and setting of the actuators, including all mono- and biarticular muscle-tendon units, are based on the derived design guidelines and are extensively validated by means of the simulation models and the motion control method. These developments are expected to significantly enhance progress in the field of bipedal robot design and, in the long term, to drive improvements in rehabilitation for humans through an understanding of the neuromechanics underlying human walking and the application of this knowledge to the design of prosthetics

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility
    corecore