4,036 research outputs found

    The use of cement leftovers from the hollow of spun piles as an additive in self-compacting concrete

    Get PDF
    Spun piles have been used widely by developing countries, including Malaysia, to construct the foundation of most construction projects. A spun pile is a reinforced precast and prestressed concrete that is compacted in a mould through spinning compaction. The spinning compaction produces cement leftovers in the hollow part of spun piles that can be added to concrete mixtures as an additive. The cement leftovers of spun piles were used as an additive in cement in range of 0%, 10%, 20% and 30% (equal percentages). The resulting compressive strength after curing periods of 7 days and 28 days were presented to investigate the properties of self-compacting concrete containing cement leftovers from the spun piles. Other properties investigated include the physical properties of fresh concrete and water absorption. The results indicated that higher compressive strength and lower water absorption were achieved by the concrete samples containing cement leftovers compared to controlled concrete

    Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Get PDF
    The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM) motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG). Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized

    Sensorless SVPWM-FADTC of a new flux-modulated permanent-magnet wheel motor based on a wide-speed sliding mode observer

    Get PDF
    published_or_final_versio

    Employability skills for hospitality students in Malaysia

    Get PDF
    Malaysia needs high skilled workforce to support growth of the industry. With dynamically changing job market and progressive technological change, employees are expected to keep abreast of global economics. In the process of achieving the status of developed nation by the year 2020, Malaysia needs to restructure its workforce to ensure that middle level workers are highly skilled. Current job environment demands multi-task and skills. Thus, university graduates must be prepared to meet the demand especially in the hospitality industry. The purpose of this study is to identify the level of employability skills in the hospitality field. This research applied quantitative methodology. The respondents consist of final year students in bakery and culinary programme. Stratified sampling was used to select students in hospitality programs from 22 vocational colleges in Malaysia. Questionnaires were distributed to 841 students in five regions which are Central, South, North, East and East Malaysia (Sarawak) in Malaysia. Descriptive analysis was used to analyse the quantitative data. The results showed that the level of hospitality employability skills among vocational students in Malaysia were at high level of competence (93.2%). The research has brought meaningful implications for hospitality vocational students, employers and policy makers

    Flux switching machine design for high-speed geared drives

    Get PDF
    Electrical machines capable of high-speed operation are key technology used in many modern applications, such as gas turbine electrical systems, high-speed fly-wheels, turbochargers, and computer numerical control (CNC) machines. The use of geared high-speed machines to replace low-speed high torque drives has not been adequately researched to-date. The rationale of this thesis is to investigate a candidate high speed machine, namely flux switching machines to be used together with new types of core material with mechanical gearing to deliver high-torque and low speeds. Modern developments in advanced material technology have produced new magnetic materials capable of dealing with high resulting in very low losses in high speed machines. However, such metals typically have low mechanical strength, and they are found to be brittle. In order to manufacture electromechanical device with such new materials, it has to be reinforced with a mechanically strong structure. The use of multiple types of magnetic materials referred as a MMLC has been proposed in this thesis for high-speed machine design. In this research, a generic method using magnetic equivalent circuit to model flux switching machines (FSMs) is investigated. Moreover modeling, based on machine dimensions for multiphase FSMs having any pole and slot number has been introduced. The air-gap permeance modeling to simplify the magnetic circuit calculation of FSMs was also investigated in this thesis. It is shown that the permeability of magnetic material can be adjusted with the use of MMLC material. Using this feature, the FSM mathematical model is used to show the impact on electromagnetic performance using MMLCs and is shown to be beneficial. In order the evaluate the weight benefits of using geared high speed FSMs, the planetary gear systems are studies and their design constraints have been identified. An abstract form of weight estimation for given torque and speed requirements has been developed and validated using commercially available planetary gear specifications. FSMs together with gear boxes have been considered and it is shown that significant weight savings can be achieved at higher diameter and at high speeds

    Maximum power point tracking control of a linear magnetic-geared generator for direct-drive wave energy conversion

    Get PDF
    This paper deals with control of a linear magneticgeared permanent-magnet generator for wave power generation using maximum power point tracking (MPPT) algorithm. Firstly, the linear magnetic-geared permanent-magnet generator structure is presented. The machine modeling is established based on the finite element analysis (FEA). Secondly, by analyzing the dynamic model of the wave power, the MPPT algorithm for directdrive wave power generation is discussed. Then, the performance for maximizing wave power absorption is verified and evaluated by the circuit simulator. The results verify that the MPPT algorithm is valid for the direct-drive wave power generation.postprin

    Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles

    Get PDF
    With ever-increasing concerns on our environment, there is a fast growing interest in electric vehicles (EVs) and hybrid EVs (HEVs) from automakers, governments, and customers. As electric drives are the core of both EVs and HEVs, it is a pressing need for researchers to develop advanced electric-drive systems. In this paper, an overview of permanent-magnet (PM) brushless (BL) drives for EVs and HEVs is presented, with emphasis on machine topologies, drive operations, and control strategies. Then, three major research directions of the PM BL drive systems are elaborated, namely, the magnetic-geared outer-rotor PM BL drive system, the PM BL integrated starter-generator system, and the PM BL electric variable-transmission system. © 2008 IEEE.published_or_final_versio

    Exploring classification for sentiment analysis from halal based tweets

    Get PDF
    Globally, social media is gaining popularity and redefining how people interact with one another online. Malaysian individuals, for example, are increasingly reliant on social media platforms such as Facebook and Twitter as well as LinkedIn, Pinterest, Instagram, and other similar sites. Consider sentiment analysis to be a sub-category of social listening. A social media sentiment analysis has uncovered the public's current feelings on a particular topic or brand. Sentiment analysis is a technique for characterizing and capturing emotional states from unstructured text. The most important part of sentiment analysis is to evaluate a body of text to comprehend the opinion expressed by it. It usually assigns a polarity of “positive”, “negative” or “neutral”. It uses an algorithmic technique to capture people's thoughts, sentiments, and emotions by incorporating Natural Language Processing and Machine Learning technology. Sentiment analysis in Malaysia's social media is challenging to perform since posts are frequently written in a mixed language, usage of English and Malay with embedded jargon and various district dialect. The classification was performed based on Malaysia halal certification scheme for each tweet to acquire the class label's frequency value based on the sentiment analysis process's polarity results. It will demonstrate social media users' proclivity for posting and can act as a reference point for users when making decisions. An analysis of amounted 500 tweets with the hashtag #sijilhalal elicited information regarding people's feelings, preconceptions, and attitudes toward various issues related to halal certification in Malaysia. The discovery of a person's emotions concerning halal topics is visualized. Muslims' views are of importance to #sijilhalal awareness

    Magnetic Gears and Magnetically Geared Electrical Machines with Reduced Rare-Earth Materials

    Get PDF
    This thesis covers a new emerging class of electrical machines, namely, Magnetic Gears (MGs) and Magnetically Geared Machines (MGMs). This particular kind of gears/machines are able of either scaling up or down the revolution-per-minute to meet various load profiles as in the case of mechanical gearboxes. Mechanical gearboxes have historically dominated various applications due to their relatively high torque density. However, mechanical gearboxes require physical contact between the rotational components, whereas MGs and MGMs accomplish fundamentally the same function via a contactless mechanism. This physical isolation between the rotational components lead to several advantages in a favor of MGs and MGMs over mechanical gearboxes. Although MGs and MGMs can potentially provide a solution for some of the practical issues of mechanical gears, MGs and MGMs have two major challenges that researchers have been trying to address. Those challenges are the high usage of rare-earth Permeant Magnet (PM) materials and the relatively complex mechanical structure of MGs and MGMs both of which are a consequence of the multi-airgap design. As in any engineering field, materials play a significant role and present a trad-off between the performance and cost. In addition to the previous trad-off, the concern with rare-earth PM materials is sustainability as well as price fluctuations. Current research in electrical machines demonstrate real initiatives to reduce the cost of electrical machines by reducing/eliminating the PM rare-earth content while attempting to maintain a competitive electromagnetic performance. Most advanced electrical machines use Dy-NdFeB PM with high energy product at elevated temperatures. Dysprosium (Dy) is one of heavy rare-earth elements and the key source of the price volatility. As a consequence, this thesis aims to address foregoing PM material challenges and investigate the electromagnetic performance of designs that blend different PM types in the context of MGs and MGMs. In addition, practical designs will be proposed in order to reduce the complexity related to the nature of MGs and MGMs

    Fault-Tolerant Capability and Torque-Speed Measurements of Permanent Magnet Brushless AC Machines

    Get PDF
    In this paper, the fault-tolerant capability in terms of inductance profile of a dual-stator permanent magnet brushless AC machine is presented. Similarly, its power-speed and torque-speed characteristics are also predicted. Special reference is made to the impact of different rotor pole numbers. A 2D-finite element analysis (FEA) procedure is adopted in this work, and the cross-coupling effect of the machine inductances owing to the influence of direct-axis and quadrature-axis currents is also taken into consideration. The results show that, the investigated machine having odd number of rotor poles would exhibit better fault-tolerant capability compared to their counterparts with even number of rotor poles. Further, the machine having 6-stator slots and 13-rotor poles i.e. 6Slots-13P machine has the greatest field-weakening potential owing to its high full-speed to rated speed relation. The studies also show that, the investigated machines have negligible reluctance torque due to their basically unity saliency ratios obtained from the machines’ almost similar quadrature-axis inductance, Lq, and direct-axis inductance, Ld, values.Keywords: Direct-axis, Quadrature-axis, Inductance, Power, Speed, Torque, AC machines, Permanent magnet
    • …
    corecore