31,340 research outputs found

    Two-channel linear phase FIR QMF bank minimax design via global nonconvex optimization programming

    Get PDF
    In this correspondence, a two-channel linear phase finite impulse response (FIR) quadrature mirror filter (QMF) bank minimax design problem is formulated as a nonconvex optimization problem so that a weighted sum of the maximum amplitude distortion of the filter bank, the maximum passband ripple magnitude and the maximum stopband ripple magnitude of the prototype filter is minimized subject to specifications on these performances. A modified filled function method is proposed for finding the global minimum of the nonconvex optimization problem. Computer numerical simulations show that our proposed design method is efficient and effective

    Decentralized spectral resource allocation for OFDMA downlink of coexisting macro/femto networks using filled function method

    Get PDF
    For an orthogonal frequency division multiple access (OFDMA) downlink of a spectrally coexisting macro and femto network, a resource allocation scheme would aim to maximize the area spectral efficiency (ASE) subject to constraints on the radio resources per transmission interval accessible by each femtocell. An optimal resource allocation scheme for completely decentralized deployments leads however to a nonconvex optimization problem. In this paper, a filled function method is employed to find the global maximum of the optimization problem. Simulation results show that our proposed method is efficient and effective

    Recent advances in the ultrasonic polar scan method for characterizing (degraded) fiber reinforced plastics

    Get PDF
    The ultrasonic polar scan (UPS) technique originated in the 1980's as a sophisticated method for inspecting composites. However, it is only in recent times that the true capabilities and strengths of the UPS methodology have been evidenced through experiment and simulation. Nowadays, the UPS method exists in different versions which led to several novel applications in the field of material inspection and characterization. This contribution gives an overview of our recent advances

    Ground-States of Two Directed Polymers

    Full text link
    Joint ground states of two directed polymers in a random medium are investigated. Using exact min-cost flow optimization the true two-line ground-state is compared with the single line ground state plus its first excited state. It is found that these two-line configurations are (for almost all disorder configurations) distinct implying that the true two-line ground-state is non-separable, even with 'worst-possible' initial conditions. The effective interaction energy between the two lines scales with the system size with the scaling exponents 0.39 and 0.21 in 2D and 3D, respectively.Comment: 19 pages RevTeX, figures include

    Incommensurate Matrix Product State for Quantum Spin Systems

    Full text link
    We introduce a matrix product state (MPS) with an incommensurate periodicity by applying the spin-rotation operator of each site to a uniform MPS in the thermodynamic limit. The spin rotations decrease the variational energy with accompanying translational symmetry breaking and the rotational symmetry breaking in the spin space even if the Hamiltonian has the both symmetries. The optimized pitch of rotational operator reflects the commensurate/incommensurate properties of spin-spin correlation functions in the S=1/2S=1/2 Heisenberg chain and the S=1/2S=1/2 ferro-antiferro zigzag chain.Comment: 6 pages, 5 figure

    Crashworthiness design of a steel–aluminum hybrid rail using multi-response objective-oriented sequential optimization

    Full text link
    © 2017 Elsevier Ltd Hybrid structures with different materials have aroused increasing interest for their lightweight potential and excellent performances. This study explored the optimization design of steel–aluminum hybrid structures for the highly nonlinear impact scenario. A metamodel based multi-response objective-oriented sequential optimization was adopted, where Kriging models were updated with sequential training points. It was indicated that the sequential sampling strategy was able to obtain a much higher local accuracy in the neighborhood of the optimum and thus to yield a better optimum, although it did lead to a worse global accuracy over the entire design space. Furthermore, it was observed that the steel–aluminum hybrid structure was capable of decreasing the peak force and simultaneously enhancing the energy absorption, compared to the conventional mono-material structure

    Allpass VFD Filter Design

    Get PDF
    This correspondence proposes a general design for allpass variable fractional delay (VFD) digital filters with minimum weighted integral squared error subject to constraints on maximum error deviation from the desired response. The resulting optimization problem is nonlinear and nonconvex with a nonlinear continuous inequality constraint. Stability of the designed filters are discussed. An effective procedure is proposed for solving the optimization problem. Firstly, a constraint transcription method and a smoothing technique are employed to transform the continuous inequality constraint into one equality constraint. Then, by using the concept of a penalty function, the transformed constraint is incorporated into the cost function to form a new cost function. The nonlinear optimization problem subject to continuous inequality constraints is then approximated by a sequence of unconstraint optimization problems. Finally, a global optimization method using a filled function is employed to solve the unconstraint optimization problem. Design example shows that a trade-off can be achieved between the integral squared error and the maximum error deviation for the design of allpass VFD filters
    corecore