308 research outputs found

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.Agência financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a Ciência e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation

    Get PDF
    In this paper we evaluate several well-known and widely used machine learning algorithms for regression in the energy disaggregation task. Specifically, the Non-Intrusive Load Monitoring approach was considered and the K-Nearest-Neighbours, Support Vector Machines, Deep Neural Networks and Random Forest algorithms were evaluated across five datasets using seven different sets of statistical and electrical features. The experimental results demonstrated the importance of selecting both appropriate features and regression algorithms. Analysis on device level showed that linear devices can be disaggregated using statistical features, while for non-linear devices the use of electrical features significantly improves the disaggregation accuracy, as non-linear appliances have non-sinusoidal current draw and thus cannot be well parametrized only by their active power consumption. The best performance in terms of energy disaggregation accuracy was achieved by the Random Forest regression algorithm.Peer reviewedFinal Published versio

    Recent approaches and applications of non-intrusive load monitoring

    Get PDF
    The Appliance Load Monitoring is vital in every energy consuming system be it commercial, residential or industrial in nature. Traditional load monitoring system, which used to be intrusive in nature require the installation of sensors to every load of interest which makes the system to be costly, time consuming and complex. Nonintrusive load monitoring (NILM) system uses the aggregated measurement at the utility service entry to identify and disaggregate the appliances connected in the building, which means only one set of sensors is required and it does not require entrance into the consumer premises. We presented a study in this paper providing a comprehensive review of the state of art of NILM, the different methods applied by researchers so far, before concluding with the future research direction, which include automatic home energy saving using NILM. The study also found that more efforts are needed from the researchers to apply NILM in appliance energy management, for example a Home Energy Management System (HEMS)

    Energy Disaggregation for Real-Time Building Flexibility Detection

    Get PDF
    Energy is a limited resource which has to be managed wisely, taking into account both supply-demand matching and capacity constraints in the distribution grid. One aspect of the smart energy management at the building level is given by the problem of real-time detection of flexible demand available. In this paper we propose the use of energy disaggregation techniques to perform this task. Firstly, we investigate the use of existing classification methods to perform energy disaggregation. A comparison is performed between four classifiers, namely Naive Bayes, k-Nearest Neighbors, Support Vector Machine and AdaBoost. Secondly, we propose the use of Restricted Boltzmann Machine to automatically perform feature extraction. The extracted features are then used as inputs to the four classifiers and consequently shown to improve their accuracy. The efficiency of our approach is demonstrated on a real database consisting of detailed appliance-level measurements with high temporal resolution, which has been used for energy disaggregation in previous studies, namely the REDD. The results show robustness and good generalization capabilities to newly presented buildings with at least 96% accuracy.Comment: To appear in IEEE PES General Meeting, 2016, Boston, US

    Incorporating appliance usage patterns for non-intrusive load monitoring and load forecasting

    Get PDF
    This paper proposes a novel Non-Intrusive Load Monitoring (NILM) method which incorporates appliance usage patterns (AUPs) to improve performance of active load identi- fication and forecasting. In the first stage, the AUPs of a given residence were learnt using a spectral decomposition based standard NILM algorithm. Then, learnt AUPs were utilized to bias the priori probabilities of the appliances through a specifically constructed fuzzy system. The AUPs contain likelihood measures for each appliance to be active at the present instant based on the recent activity/inactivity of appliances and the time of day. Hence, the priori probabilities determined through the AUPs increase the active load identification accuracy of the NILM algorithm. The proposed method was successfully tested for two standard databases containing real household measurements in USA and Germany. The proposed method demonstrates an improvement in active load estimation when applied to the aforementioned databases as the proposed method augments the smart meter readings with the behavioral trends obtained from AUPs. Furthermore, a residential power consumption forecasting mechanism, which can predict the total active power demand of an aggregated set of houses, five minutes ahead of real time, was successfully formulated and implemented utilizing the proposed AUP based technique

    Comprehensive feature selection for appliance classification in NILM

    Get PDF
    Since the inception of non-intrusive appliance load monitoring (NILM), extensive research has focused on identifying an effective set of features that allows to form a unique appliance signature to discriminate various loads. Although an abundance of features are reported in literature, most works use only a limited subset of them. A systematic comparison and combination of the available features in terms of their effectiveness is still missing. This paper, as its first contribution, offers a concise and updated review of the features reported in literature for the purpose of load identification. As a second contribution, a systematic feature elimination process is proposed to identify the most effective feature set. The analysis is validated on a large benchmark dataset and shows that the proposed feature elimination process improves the appliance classification accuracy for all the appliances in the dataset compared to using all the features or randomly chosen subsets of features. (C) 2017 Elsevier B.V. All rights reserved
    corecore