117 research outputs found

    Survivability aspects of future optical backbone networks

    Get PDF
    In huidige glasvezelnetwerken kan een enkele vezel een gigantische hoeveelheid data dragen, ruwweg het equivalent van 25 miljoen gelijktijdige telefoongesprekken. Hierdoor zullen netwerkstoringen, zoals breuken van een glasvezelkabel, de communicatie van een groot aantal eindgebruikers verstoren. Netwerkoperatoren kiezen er dan ook voor om hun netwerk zo te bouwen dat zulke grote storingen automatisch opgevangen worden. Dit proefschrift spitst zich toe op twee aspecten rond de overleefbaarheid in toekomstige optische netwerken. De eerste doelstelling die beoogd wordt is het tot stand brengen vanrobuuste dataverbindingen over meerdere netwerken. Door voldoende betrouwbare verbindingen tot stand te brengen over een infrastructuur die niet door een enkele entiteit wordt beheerd kan men bv. weredwijd Internettelevisie van hoge kwaliteit aanbieden. De bestudeerde oplossing heeft niet enkel tot doel om deze zeer betrouwbare verbinding te berekenen, maar ook om dit te bewerkstelligen met een minimum aan gebruikte netwerkcapaciteit. De tweede doelstelling was om een antwoord te formuleren om de vraag hoe het toepassen van optische schakelsystemen gebaseerd op herconfigureerbare optische multiplexers een impact heeft op de overleefbaarheid van een optisch netwerk. Bij lagere volumes hebben optisch geschakelde netwerken weinig voordeel van dergelijke gesofistikeerde methoden. Elektronisch geschakelde netwerken vertonen geen afhankelijkheid van het datavolume en hebben altijd baat bij optimalisatie

    Neighborhood Failure Localization in All-Optical Networks via Monitoring Trails

    Get PDF
    Shared protection, such as failure dependent protection (FDP), is well recognized for its outstanding capacity efficiency in all-optical mesh networks, at the expense of lengthy restoration time due to multi-hop signaling mechanisms for failure localization, notification, and device configuration. This paper investigates a novel monitoring trail (m-trail) scenario, called Global Neighborhood Failure Localization (G-NFL), that aims to enable any shared protection scheme, including FDP, for achieving all-optical and ultra-fast failure restoration. We firstly define neighborhood of a node, which is a set of links whose failure states should be known to the node in restoration of the corresponding working lightpaths (W-LPs). By assuming every node can obtain the on-off status of traversing m-trails and W-LPs via lambda monitoring, the proposed G-NFL problem routes a set of m-trails such that each node can localize any failure in its neighborhood. Bound analysis is performed on the minimum bandwidth required for m-trails under the proposed G-NFL problem. Then a simple yet efficient heuristic approach is presented. Extensive simulation is conducted to verify the proposed G-NFL scenario under a number of different definitions of nodal neighborhood which concern the extent of dependency between the monitoring plane and data plane. The effect of reusing the spare capacity by FDP for supporting m-trails is examined. We conclude that the proposed G-NFL scenario enables a general shared protection scheme, toward signaling-free and ultra-fast failure restoration like p-Cycle, while achieving optimal capacity efficiency as FDP

    On Signaling-Free Failure Dependent Restoration in All-Optical Mesh Networks

    Get PDF
    Failure dependent protection (FDP) is known to achieve optimal capacity efficiency among all types of protection, at the expense of longer recovery time and more complicated signaling overhead. This particularly hinders the usage of FDP in all-optical mesh networks. As a remedy, the paper investigates a new restoration framework that enables all-optical fault management and device configuration via state-of-the-art failure localization techniques, such that the FDP restoration process. It can be implemented without relying on any control plane signaling. With the proposed restoration framework, a novel spare capacity allocation problem is defined, and is further analyzed on circulant topologies for any single link failure, aiming to gain a solid understanding of the problem. By allowing reuse of monitoring resources for restoration capacity, we are particularly interested in the monitoring resource hidden property where less or even no monitoring resources are consumed as more working traffic is in place. To deal with general topologies, we introduce a novel heuristic approach to the proposed spare capacity allocation problem, which comprises a generic FDP survivable routing scheme followed by a novel monitoring resource allocation method. Extensive simulation is conducted to examine the proposed scheme and verify the proposed restoration framework

    Neighborhood Failure Localization in All-Optical Networks via Monitoring Trails

    Get PDF
    Shared protection, such as failure dependent protection (FDP), is well recognized for its outstanding capacity efficiency in all-optical mesh networks, at the expense of lengthy restoration time due to multi-hop signaling mechanisms for failure localization, notification, and device configuration. This paper investigates a novel monitoring trail (m-trail) scenario, called Global Neighborhood Failure Localization (G-NFL), that aims to enable any shared protection scheme, including FDP, for achieving all-optical and ultra-fast failure restoration. We firstly define neighborhood of a node, which is a set of links whose failure states should be known to the node in restoration of the corresponding working lightpaths (W-LPs). By assuming every node can obtain the on-off status of traversing m-trails and W-LPs via lambda monitoring, the proposed G-NFL problem routes a set of m-trails such that each node can localize any failure in its neighborhood. Bound analysis is performed on the minimum bandwidth required for m-trails under the proposed G-NFL problem. Then a simple yet efficient heuristic approach is presented. Extensive simulation is conducted to verify the proposed G-NFL scenario under a number of different definitions of nodal neighborhood which concern the extent of dependency between the monitoring plane and data plane. The effect of reusing the spare capacity by FDP for supporting m-trails is examined. We conclude that the proposed G-NFL scenario enables a general shared protection scheme, toward signaling-free and ultra-fast failure restoration like p-Cycle, while achieving optimal capacity efficiency as FDP

    Regenerator placement and fault management in multi-wavelength optical networks.

    Get PDF
    Shen, Dong.Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.Includes bibliographical references (p. 98-106).Abstracts in English and Chinese.Abstract --- p.i摘要 --- p.ivAcknowledgements --- p.vTable of Contents --- p.viChapter Chapter 1 --- Background --- p.1Chapter 1.1 --- Translucent Optical Networks --- p.1Chapter 1.1.1 --- The Way Towards Translucent --- p.1Chapter 1.1.2 --- Translucent Optical Network Architecture Design and Planning --- p.3Chapter 1.1.3 --- Other Research Topics in Translucent Optical Networks --- p.6Chapter 1.2 --- Fault Monitoring in All-Optical Networks --- p.12Chapter 1.2.1 --- Fault Monitoring in Network Layer's Perspective --- p.12Chapter 1.2.2 --- Passive Optical Monitoring --- p.14Chapter 1.2.3 --- Proactive Optical Monitoring --- p.16Chapter 1.3 --- Contributions --- p.17Chapter 1.3.1 --- Translucent Optical Network Planning with Heterogeneous Modulation Formats --- p.17Chapter 1.3.2 --- Multiplexing Optimization in Translucent Optical Networks --- p.19Chapter 1.3.3 --- An Efficient Regenerator Placement and Wavelength Assignment Scheme in Translucent Optical Networks --- p.20Chapter 1.3.4 --- Adaptive Fault Monitoring in All-Optical Networks Utilizing Real-Time Data Traffic --- p.20Chapter 1.4 --- Organization of Thesis --- p.22Chapter Chapter 2 --- Regenerator Placement and Resource Allocation Optimization in Translucent Optical Networks --- p.23Chapter 2.1 --- Introduction --- p.23Chapter 2.2 --- Translucent Optical Network Planning with Heterogeneous Modulation Formats --- p.25Chapter 2.2.1 --- Motivation and Problem Statements --- p.25Chapter 2.2.2 --- A Two-Step Planning Algorithm Using Two Modulation Formats to Realize Any-to-Any Topology Connectivity --- p.28Chapter 2.2.3 --- Illustrative Examples --- p.30Chapter 2.2.3 --- ILP Formulation of Minimizing Translucent Optical Network Cost with Two Modulation Formats under Static Traffic Demands --- p.34Chapter 2.2.4 --- Illustrative Numeric Examples --- p.42Chapter 2.3 --- Resource Allocation Optimization in Translucent Optical Networks --- p.45Chapter 2.3.1 --- Multiplexing Optimization with Auxiliary Graph --- p.45Chapter 2.3.2 --- Simulation Study of Proposed Algorithm --- p.51Chapter 2.3.3 --- An Efficient Regenerator Placement and Wavelength Assignment Solution --- p.55Chapter 2.3.4 --- Simulation Study of Proposed Algorithm --- p.60Chapter 2.4 --- Summary --- p.64Chapter Chapter 3 --- Adaptive Fault Monitoring in All-Optical Networks Utilizing Real-Time Data Traffic --- p.65Chapter 3.1 --- Introduction --- p.65Chapter 3.2 --- Adaptive Fault Monitoring --- p.68Chapter 3.2.1 --- System Framework --- p.68Chapter 3.2.2 --- Phase 1: Passive Monitoring --- p.70Chapter 3.2.3 --- Phase 2: Proactive Probing --- p.71Chapter 3.2.4 --- Control Plane Design and Analysis --- p.80Chapter 3.2.5 --- Physical Layer Implementation and Suggestions --- p.83Chapter 3.3 --- Placement of Label Monitors --- p.83Chapter 3.3.1 --- ILP Formulation --- p.84Chapter 3.3.2 --- Simulation Studies --- p.86Chapter 3.3.3 --- Discussion of Topology Evolution Adaptiveness --- p.93Chapter 3.4 --- Summary --- p.95Chapter Chapter 4 --- Conclusions and Future Work --- p.95Chapter 4.1 --- Conclusions --- p.96Chapter 4.2 --- Future Work --- p.97Bibliography --- p.98Publications during M.Phil Study --- p.10

    On Integrating Failure Localization with Survivable Design

    Get PDF
    In this thesis, I proposed a novel framework of all-optical failure restoration which jointly determines network monitoring plane and spare capacity allocation in the presence of either static or dynamic traffic. The proposed framework aims to enable a general shared protection scheme to achieve near optimal capacity efficiency as in Failure Dependent Protection(FDP) while subject to an ultra-fast, all-optical, and deterministic failure restoration process. Simply put, Local Unambiguous Failure Localization(L-UFL) and FDP are the two building blocks for the proposed restoration framework. Under L-UFL, by properly allocating a set of Monitoring Trails (m-trails), a set of nodes can unambiguously identify every possible Shared Risk Link Group (SRLG) failure merely based on its locally collected Loss of Light(LOL) signals. Two heuristics are proposed to solve L-UFL, one of which exclusively deploys Supervisory Lightpaths (S-LPs) while the other jointly considers S-LPs and Working Lightpaths (W-LPs) for suppressing monitoring resource consumption. Thanks to the ``Enhanced Min Wavelength Max Information principle'', an entropy based utility function, m-trail global-sharing and other techniques, the proposed heuristics exhibit satisfactory performance in minimizing the number of m-trails, Wavelength Channel(WL) consumption and the running time of the algorithm. Based on the heuristics for L-UFL, two algorithms, namely MPJD and DJH, are proposed for the novel signaling-free restoration framework to deal with static and dynamic traffic respectively. MPJD is developed to determine the Protection Lightpaths (P-LPs) and m-trails given the pre-computed W-LPs while DJH jointly implements a generic dynamic survivable routing scheme based on FDP with an m-trail deployment scheme. For both algorithms, m-trail deployment is guided by the Necessary Monitoring Requirement (NMR) defined at each node for achieving signaling-free restoration. Extensive simulation is conducted to verify the performance of the proposed heuristics in terms of WL consumption, number of m-trails, monitoring requirement, blocking probability and running time. In conclusion, the proposed restoration framework can achieve all-optical and signaling-free restoration with the help of L-UFL, while maintaining high capacity efficiency as in FDP based survivable routing. The proposed heuristics achieve satisfactory performance as verified by the simulation results

    Survivability through pre-configured protection in optical mesh networks

    Get PDF
    Network survivability is a very important issue, especially in optical networks that carry huge amount of traffic. Network failures which may be caused by human errors, malfunctional systems and natural disaster (eg. Earthquakes and lightening storms), have occurred quite frequently and sometimes with unpredictable consequences. Survivability is defined as the ability of the network to maintain the continuity of service against failures of network components. Pre-configuration and dynamic restoration are two schemes for network survivability. For each scheme, survivability algorithms can be applied at either Optical Channel sublayer (Och) known as link-based. Or, Optical Multiplex Section sublayer (OMS) known as path-based. The efficiency of survivability algorithms can be assessed through such criteria as capacity efficiency, restoration time and quality service. Dynamic restoration is more efficient than pre-configuration in terms of capacity resource utilization, but restoration time is longer and 100% service recovery cannot be guaranteed because sufficient spare capacity may not be available at the time of failures. Similarly, path-based survivability offers a high performance scheme for utilizing capacity resource, but restoration time is longer than link based survivability

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study

    Scalable fault management architecture for dynamic optical networks : an information-theoretic approach

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.MIT Barker Engineering Library copy: printed in pages.Also issued printed in pages.Includes bibliographical references (leaves 255-262).All-optical switching, in place of electronic switching, of high data-rate lightpaths at intermediate nodes is one of the key enabling technologies for economically scalable future data networks. This replacement of electronic switching with optical switching at intermediate nodes, however, presents new challenges for fault detection and localization in reconfigurable all-optical networks. Presently, fault detection and localization techniques, as implemented in SONET/G.709 networks, rely on electronic processing of parity checks at intermediate nodes. If similar techniques are adapted to all-optical reconfigurable networks, optical signals need to be tapped out at intermediate nodes for parity checks. This additional electronic processing would break the all-optical transparency paradigm and thus significantly diminish the cost advantages of all-optical networks. In this thesis, we propose new fault-diagnosis approaches specifically tailored to all-optical networks, with an objective of keeping the diagnostic capital expenditure and the diagnostic operation effort low. Instead of the aforementioned passive monitoring paradigm based on parity checks, we propose a proactive lightpath probing paradigm: optical probing signals are sent along a set of lightpaths in the network, and network state (i.e., failure pattern) is then inferred from testing results of this set of end-to-end lightpath measurements. Moreover, we assume that a subset of network nodes (up to all the nodes) is equipped with diagnostic agents - including both transmitters/receivers for probe transmission/detection and software processes for probe management to perform fault detection and localization. The design objectives of this proposed proactive probing paradigm are two folded: i) to minimize the number of lightpath probes to keep the diagnostic operational effort low, and ii) to minimize the number of diagnostic hardware to keep the diagnostic capital expenditure low.(cont.) The network fault-diagnosis problem can be mathematically modeled with a group testing-over-graphs framework. In particular, the network is abstracted as a graph in which the failure status of each node/link is modeled with a random variable (e.g. Bernoulli distribution). A probe over any path in the graph results in a value, defined as the probe syndrome, which is a function of all the random variables associated in that path. A network failure pattern is inferred through a set of probe syndromes resulting from a set of optimally chosen probes. This framework enriches the traditional group-testing problem by introducing a topological structure, and can be extended to model many other network-monitoring problems (e.g., packet delay, packet drop ratio, noise and etc) by choosing appropriate state variables. Under the group-testing-over-graphs framework with a probabilistic failure model, we initiate an information-theoretic approach to minimizing the average number of lightpath probes to identify all possible network failure patterns. Specifically, we have established an isomorphic mapping between the fault-diagnosis problem in network management and the source-coding problem in Information Theory. This mapping suggests that the minimum average number of lightpath probes required is lower bounded by the information entropy of the network state and efficient source-coding algorithms (e.g. the run-length code) can be translated into scalable fault-diagnosis schemes under some additional probe feasibility constraint. Our analytical and numerical investigations yield a guideline for designing scalable fault-diagnosis algorithms: each probe should provide approximately 1-bit of state information, and thus the total number of probes required is approximately equal to the entropy of the network state.(cont.) To address the hardware cost of diagnosis, we also developed a probabilistic analysis framework to characterize the trade-off between hardware cost (i.e., the number of nodes equipped with Tx/Rx pairs) and diagnosis capability (i.e., the probability of successful failure detection and localization). Our results suggest that, for practical situations, the hardware cost can be reduced significantly by accepting a small amount of uncertainty about the failure status.by Yonggang Wen.Ph.D
    corecore