35 research outputs found

    Survey on Aerial Multirotor Design: a Taxonomy Based on Input Allocation

    Get PDF
    This paper reviews the impact of multirotor aerial vehicles designs on their abilities in terms of tasks and system properties. We propose a general taxonomy to characterize and describe multirotor aerial vehicles and their design, which we apply exhaustively on the vast literature available. Thanks to the systematic characterization of the designs we exhibit groups of designs having the same abilities in terms of achievable tasks and system properties. In particular, we organize the literature review based on the number of atomic actuation units and we discuss global properties arising from their choice and spatial distribution in the designs. Finally, we provide a discussion on the common traits of the designs found in the literature and the main future open problems

    Modeling and control of an overactuated aerial vehicle with four tiltable quadrotors attached by means of passive universal joints

    Get PDF
    We present a novel overactuated aerial vehicle based on four quadrotors connected to an airframe by means of passive universal joints. The proposed architecture allows to independently control the six degrees of freedom of the airframe without having fixed propellers at inefficient configurations or making use of dedicated rotor tilting actuators. After deriving the dynamic equations that describe its motion, we propose a linear control strategy that is able to successfully decouple rotation and translation, relying exclusively on on-board sensors. A prototype is built and preliminary experimental results demonstrate that the concept is feasible.Video: https://youtu.be/9ASP3FyhCJw.This research was supported by the ELKARTEK 2018 program of the Basque Government, grant agreement No. KK-2018/00082

    Enhancing VTOL Multirotor Performance With a Passive Rotor Tilting Mechanism

    Get PDF
    This article discusses the benefits of introducing a simple passive mechanism to enable rotor tilting in Vertical Take-Off and Landing (VTOL) multirotor vehicles. Such a system is evaluated in relevant Urban Air Mobility (UAM) passenger transport scenarios such as hovering in wind conditions and overcoming rotor failures. While conventional parallel axis multirotors are underactuated systems, the proposed mechanism makes the vehicle fully actuated in SE(3), which implies independent cabin position and orientation control. An accurate vehicle simulator with realistic parameters is presented to compare in simulation the proposed architecture with a conventional underactuated VTOL vehicle that shares the same physical properties. In order to make fair comparisons, controllers are obtained solving an optimization problem in which the cost function of both systems is chosen to be equivalent. In particular, the control laws are Linear-Quadratic Regulators (LQR), which are derived by linearizing the systems around hover. It is shown through extensive simulation that the introduction of a passive rotor tilting mechanism based on universal joints improves performance metrics such as vehicle stability, power consumption, passenger comfort and position tracking precision in nominal flight conditions and it does not compromise vehicle safety in rotor failure situations

    Modelling, Analysis and Control of OmniMorph: an Omnidirectional Morphing Multi-rotor UAV

    Full text link
    This paper introduces for the first time the design, modelling, and control of a novel morphing multi-rotor Unmanned Aerial Vehicle (UAV) that we call the OmniMorph. The morphing ability allows the selection of the configuration that optimizes energy consumption while ensuring the needed maneuverability for the required task. The most energy-efficient uni-directional thrust (UDT) configuration can be used, e.g., during standard point-to-point displacements. Fully-actuated (FA) and omnidirectional (OD) configurations can be instead used for full pose tracking, such as, e.g., constant attitude horizontal motions and full rotations on the spot, and for full wrench 6D interaction control and 6D disturbance rejection. Morphing is obtained using a single servomotor, allowing possible minimization of weight, costs, and maintenance complexity. The actuation properties are studied, and an optimal controller that compromises between performance and control effort is proposed and validated in realistic simulations

    An Omnidirectional Aerial Platform for Multi-Robot Manipulation

    Get PDF
    The objectives of this work were the modeling, control and prototyping of a new fully-actuated aerial platform. Commonly, the multirotor aerial platforms are under-actuated vehicles, since the total propellers thrust can not be directed in every direction without inferring a vehicle body rotation. The most common fully-actuated aerial platforms have tilted or tilting rotors that amplify the aerodynamic perturbations between the propellers, reducing the efficiency and the provided thrust. In order to overcome this limitation a novel platform, the ODQuad (OmniDirectional Quadrotor), has been proposed, which is composed by three main parts, the platform, the mobile and rotor frames, that are linked by means of two rotational joints, namely the roll and pitch joints. The ODQuad is able to orient the total thrust by moving only the propellers frame by means of the roll and pitch joints. Kinematic and dynamic models of the proposed multirotor have been derived using the Euler- Lagrange approach and a model-based controller has been designed. The latter is based on two control loops: an outer loop for vehicle position control and an inner one for vehicle orientation and roll-pitch joint control. The effectiveness of the controller has been tested by means of numerical simulations in the MATLAB c SimMechanics environment. In particular, tests in free motion and in object transportation tasks have been carried out. In the transportation task simulation, a momentum based observer is used to estimate the wrenches exchanged between the vehicle and the transported object. The ODQuad concept has been tested also in cooperative manipulation tasks. To this aim, a simulation model was considered, in which multiple ODQuads perform the manipulation of a bulky object with unknown inertial parameters which are identified in the first phase of the simulation. In order to reduce the mechanical stresses due to the manipulation and enhance the system robustness to the environment interactions, two admittance filters have been implemented: an external filter on the object motion and an internal one local for each multirotor. Finally, the prototyping process has been illustrated step by step. In particular, three CAD models have been designed. The ODQuad.01 has been used in the simulations and in a preliminary static analysis that investigated the torque values for a rough sizing of the roll-pitch joint actuators. Since in the ODQuad.01 the components specifications and the related manufacturing techniques have not been taken into account, a successive model, the ODQuad.02, has been designed. The ODQuad.02 design can be developed with aluminum or carbon fiber profiles and 3D printed parts, but each component must be custom manufactured. Finally, in order to shorten the prototype development time, the ODQuad.03 has been created, which includes some components of the off-the-shelf quadrotor Holybro X500 into a novel custom-built mechanical frame

    Voliro: An Omnidirectional Hexacopter With Tiltable Rotors

    Full text link
    Extending the maneuverability of unmanned areal vehicles promises to yield a considerable increase in the areas in which these systems can be used. Some such applications are the performance of more complicated inspection tasks and the generation of complex uninterrupted movements of an attached camera. In this paper we address this challenge by presenting Voliro, a novel aerial platform that combines the advantages of existing multi-rotor systems with the agility of omnidirectionally controllable platforms. We propose the use of a hexacopter with tiltable rotors allowing the system to decouple the control of position and orientation. The contributions of this work involve the mechanical design as well as a controller with the corresponding allocation scheme. This work also discusses the design challenges involved when turning the concept of a hexacopter with tiltable rotors into an actual prototype. The agility of the system is demonstrated and evaluated in real- world experiments.Comment: Submitted to Robotics and Automation Magazin

    Force-Canceling Mixer Algorithm for Vehicles with Fully-Articulated Radially Symmetric Thruster Arrays

    Get PDF
    A new type of fully-holonomic aerial vehicle is identified and developed that can optionally utilize automatic cancellation of excessive thruster forces to maintain precise control despite little or no throttle authority. After defining the physical attributes of the new vehicle, a flight control mixer algorithm is defined and presented. This mixer is an input/output abstraction that grants a flight control system (or pilot) full authority of the vehicle\u27s position and orientation by means of an input translation vector and input torque vector. The mixer is shown to be general with respect to the number of thrusters in the system provided that they are distributed in a radially symmetric array. As the mixer is designed to operate independently of the chosen flight control system, it is completely agnostic to the type of control methodology implemented. Validation of both the vehicle\u27s holonomic capabilities and efficacy of the flight control mixing algorithm are provided by a custom MATLAB-based rigid body simulation environment

    Intelligent Control for Fixed-Wing eVTOL Aircraft

    Get PDF
    Urban Air Mobility (UAM) holds promise for personal air transportation by deploying "flying cars" over cities. As such, fixed-wing electric vertical take-off and landing (eVTOL) aircraft has gained popularity as they can swiftly traverse cluttered areas, while also efficiently covering longer distances. These modes of operation call for an enhanced level of precision, safety, and intelligence for flight control. The hybrid nature of these aircraft poses a unique challenge that stems from complex aerodynamic interactions between wings, rotors, and the environment. Thus accurate estimation of external forces is indispensable for a high performance flight. However, traditional methods that stitch together different control schemes often fall short during hybrid flight modes. On the other hand, learning-based approaches circumvent modeling complexities, but they often lack theoretical guarantees for stability. In the first part of this thesis, we study the theoretical benefits of these fixed-wing eVTOL aircraft, followed by the derivation of a novel unified control framework. It consists of nonlinear position and attitude controllers using forces and moments as inputs; and control allocation modules that determine desired attitudes and thruster signals. Next, we present a composite adaptation scheme for linear-in-parameter (LiP) dynamics models, which provides accurate realtime estimation for wing and rotor forces based on measurements from a three-dimensional airflow sensor. Then, we introduce a design method to optimize multirotor configuration that ensures a property of robustness against rotor failures. In the second part of the thesis, we use deep neural networks (DNN) to learn part of unmodeled dynamics of the flight vehicles. Spectral normalization that regulates the Lipschitz constants of the neural network is applied for better generalization outside the training domain. The resultant network is utilized in a nonlinear feedback controller with a contraction mapping update, solving the nonaffine-in-control issue that arises. Next, we formulate general methods for designing and training DNN-based dynamics, controller, and observer. The general framework can theoretically handle any nonlinear dynamics with prior knowledge of its structure. Finally, we establish a delay compensation technique that transforms nominal controllers for an undelayed system into a sample-based predictive controller with numerical integration. The proposed method handles both first-order and transport delays in actuators and balances between numerical accuracy and computational efficiency to guarantee stability under strict hardware limitations.</p

    Conception d’un quadrirotor à rotors inclinables pour le suivi de trajectoires agressives

    Get PDF
    RÉSUMÉ Les quadrirotors sont des plateformes robotiques aériennes peu coûteuses et agiles. Plusieurs applications sont envisageables avec ces robots tels que l’exploration des mines ou les opérations de reconnaissance et sauvetage. Ces missions nécessitent de naviguer dans des environnements encombrés et imprédictibles. Le véhicule utilisé doit pouvoir éviter rapidement des obstacles tout en circulant à haute vitesse. Le quadrirotor étant sous-actionné est limité dans son agressivité puisqu’il doit s’incliner avant d’accélérer. De plus, les contrôleurs conventionnels utilisés ne prédisent pas le comportement qu’aura le véhicule durant la trajectoire en utilisant sa dynamique ce qui l’empêche de planifier assidument les manœuvres complexes. Dans ce contexte, l’objectif principal de ce mémoire est de s’affranchir de ces deux limitations en développant un quadrirotor capable d’incliner ses moteurs pour accélérer plus rapidement et d’utiliser un contrôleur prédictif pour le suivi de trajectoire. Plus spécifiquement, une modification au design conventionnel du quadrirotor est proposée par l’ajout d’un seul actuateur pour permettre des manœuvres agressives dans un seul axe. Puis, un ILQR qui est un contrôleur prédictif sans optimisation numérique, est développé. Celui-ci tient compte de l’état à jour du quadrirotor pour la linéarisation et la résolution du problème de contrôle optimal. En premier lieu, le modèle dynamique du quadrirotor à moteurs inclinables est présenté. Puis, une loi de contrôle basé sur un schéma de contrôle en cascade avec une boucle régulant la dynamique en translation à l’aide d’un ILQR et une autre la dynamique en rotation avec un régulateur PD sont implémentées. Ensuite, la solution proposée est testée en simulation et comparée aux approches conventionnelles tant en termes de conception mécanique qu’en asservissement. L’erreur en suivi de trajectoire est diminuée de plus de 1483% avec un impact supérieur de l’ajout de l’inclinaison des moteurs. Enfin, un prototype expérimental est conçu avec des pièces électroniques et mécaniques standards et largement accessibles. La différence entre le design conventionnel et le quadrirotor à moteurs inclinables est étudiée sur des trajectoires agressives. L’erreur diminue de plus de 26% avec l’ajout d’un actionneur alors qu’en simulation pour la même trajectoire l’erreur diminue de 38% ce qui indique que la même tendance est conservée.----------ABSTRACT Quadrotors are cost-effective and agile aerial robotic platforms. Numerous applications are possible with these robots like mines exploration or search and rescue operations. Nevertheless, these missions require navigating through cluttered and unpredictable environments. The vehicle used for these operations must be able to avoid newly located obstacles fast while travelling at high speeds for time critical missions. Quadrotors are underactuated systems and therefore limited in their overall maneuvers because they need to tilt their whole body before accelerating in a direction. Also, conventional controllers used with these systems don’t predict the behavior of the vehicle during a trajectory by using the systems dynamics which prevents them from planning diligently complex maneuvers. In this context, the main objective of this master thesis is to mitigate these two limitations by developing a quadrotor able to tilt his motors thrust to accelerate faster and to use a predictive controller for the trajectory tracking problem. Specifically, a modification to the conventional quadrotor mechanical system is proposed by adding a single actuator to enable aggressive motions in a single axis. Then, an ILQR, which is a predictive controller and does not require parameter optimization, is developed. The latter is a state- dependent controller who behaves as a nonlinear controller by considering the known updated state of the vehicle to solve the optimal control problem. First, the dynamic model of the quadrotor with tilting motors is found. Then, a control law based on a cascade control scheme with a loop for the translational dynamics regulated by an ILQR controller and another loop for the rotational dynamics with a PD controller is implemented. Afterwards, the proposed solution is tested in simulations and compared with conventional approaches in terms of mechanical design and control. Trajectory tracking error is reduced by more than 1483% with the tilting motors modification having a superior impact on performance. Finally, an experimental prototype is designed with standard electronic and mechanical pieces available off-the-shelf. The difference between the conventional design and the quadrotor with tilting motors is studied on this custom-made quadrotor on aggressive trajectories. The error has decreased by more than 26% by adding an actuator while in simulation for the same trajectory this error decrease by 38% which indicates that the same trend is maintained

    Fault tolerant control of a quadrotor using L-1 adaptive control

    Get PDF
    Purpose – The growing use of small unmanned rotorcraft in civilian applications means that safe operation is increasingly important. The purpose of this paper is to investigate the fault tolerant properties to faults in the actuators of an L1 adaptive controller for a quadrotor vehicle. Design/methodology/approach – L1 adaptive control provides fast adaptation along with decoupling between adaptation and robustness. This makes the approach a suitable candidate for fault tolerant control of quadrotor and other multirotor vehicles. In the paper, the design of an L1 adaptive controller is presented. The controller is compared to a fixed-gain LQR controller. Findings – The L1 adaptive controller is shown to have improved performance when subject to actuator faults, and a higher range of actuator fault tolerance. Research limitations/implications – The control scheme is tested in simulation of a simple model that ignores aerodynamic and gyroscopic effects. Hence for further work, testing with a more complete model is recommended followed by implementation on an actual platform and flight test. The effect of sensor noise should also be considered along with investigation into the influence of wind disturbances and tolerance to sensor failures. Furthermore, quadrotors cannot tolerate total failure of a rotor without loss of control of one of the degrees of freedom, this aspect requires further investigation. Practical implications – Applying the L1 adaptive controller to a hexrotor or octorotor would increase the reliability of such vehicles without recourse to methods that require fault detection schemes and control reallocation as well as providing tolerance to a total loss of a rotor. Social implications – In order for quadrotors and other similar unmanned air vehicles to undertake many proposed roles, a high level of safety is required. Hence the controllers should be fault tolerant. Originality/value – Fault tolerance to partial actuator/effector faults is demonstrated using an L1 adaptive controller
    corecore