2,905 research outputs found

    Geometrical families of mechanically stable granular packings

    Full text link
    We enumerate and classify nearly all of the possible mechanically stable (MS) packings of bidipserse mixtures of frictionless disks in small sheared systems. We find that MS packings form continuous geometrical families, where each family is defined by its particular network of particle contacts. We also monitor the dynamics of MS packings along geometrical families by applying quasistatic simple shear strain at zero pressure. For small numbers of particles (N < 16), we find that the dynamics is deterministic and highly contracting. That is, if the system is initialized in a MS packing at a given shear strain, it will quickly lock into a periodic orbit at subsequent shear strain, and therefore sample only a very small fraction of the possible MS packings in steady state. In studies with N>16, we observe an increase in the period and random splittings of the trajectories caused by bifurcations in configuration space. We argue that the ratio of the splitting and contraction rates in large systems will determine the distribution of MS-packing geometrical families visited in steady-state. This work is part of our long-term research program to develop a master-equation formalism to describe macroscopic slowly driven granular systems in terms of collections of small subsystems.Comment: 18 pages, 23 figures, 5 table

    Diffusing-wave spectroscopy of nonergodic media

    Full text link
    We introduce an elegant method which allows the application of diffusing-wave spectroscopy (DWS) to nonergodic, solid-like samples. The method is based on the idea that light transmitted through a sandwich of two turbid cells can be considered ergodic even though only the second cell is ergodic. If absorption and/or leakage of light take place at the interface between the cells, we establish a so-called "multiplication rule", which relates the intensity autocorrelation function of light transmitted through the double-cell sandwich to the autocorrelation functions of individual cells by a simple multiplication. To test the proposed method, we perform a series of DWS experiments using colloidal gels as model nonergodic media. Our experimental data are consistent with the theoretical predictions, allowing quantitative characterization of nonergodic media and demonstrating the validity of the proposed technique.Comment: RevTeX, 12 pages, 6 figures. Accepted for publication in Phys. Rev.

    Nonlinear Waves in Disordered Diatomic Granular Chains

    Get PDF
    We investigate the propagation and scattering of highly nonlinear waves in disordered granular chains composed of diatomic (two-mass) units of spheres that interact via Hertzian contact. Using ideas from statistical mechanics, we consider each diatomic unit to be a "spin", so that a granular chain can be viewed as a spin chain composed of units that are each oriented in one of two possible ways. Experiments and numerical simulations both reveal the existence of two different mechanisms of wave propagation: In low-disorder chains, we observe the propagation of a solitary pulse with exponentially decaying amplitude. Beyond a critical level of disorder, the wave amplitude instead decays as a power law, and the wave transmission becomes insensitive to the level of disorder. We characterize the spatio-temporal structure of the wave in both propagation regimes and propose a simple theoretical interpretation for such a transition. Our investigation suggests that an elastic spin chain can be used as a model system to investigate the role of heterogeneities in the propagation of highly nonlinear waves.Comment: 10 pages, 8 figures (some with multiple parts), to appear in Physical Review E; summary of changes: new title, one new figure, additional discussion of several points (including both background and results

    Chaotic Mixing in Three Dimensional Porous Media

    Get PDF
    Under steady flow conditions, the topological complexity inherent to all random 3D porous media imparts complicated flow and transport dynamics. It has been established that this complexity generates persistent chaotic advection via a three-dimensional (3D) fluid mechanical analogue of the baker's map which rapidly accelerates scalar mixing in the presence of molecular diffusion. Hence pore-scale fluid mixing is governed by the interplay between chaotic advection, molecular diffusion and the broad (power-law) distribution of fluid particle travel times which arise from the non-slip condition at pore walls. To understand and quantify mixing in 3D porous media, we consider these processes in a model 3D open porous network and develop a novel stretching continuous time random walk (CTRW) which provides analytic estimates of pore-scale mixing which compare well with direct numerical simulations. We find that chaotic advection inherent to 3D porous media imparts scalar mixing which scales exponentially with longitudinal advection, whereas the topological constraints associated with 2D porous media limits mixing to scale algebraically. These results decipher the role of wide transit time distributions and complex topologies on porous media mixing dynamics, and provide the building blocks for macroscopic models of dilution and mixing which resolve these mechanisms.Comment: 36 page

    Hyperuniformity and its Generalizations

    Full text link
    Disordered many-particle hyperuniform systems are exotic amorphous states characterized by anomalous suppression of large-scale density fluctuations. Here we substantially broaden the hyperuniformity concept along four different directions. This includes generalizations to treat fluctuations in the interfacial area in heterogeneous media and surface-area driven evolving microstructures, random scalar fields, divergence-free random vector fields, as well as statistically anisotropic many-particle systems and two-phase media. Interfacial-area fluctuations play a major role in characterizing the microstructure of two-phase systems , physical properties that intimately depend on the geometry of the interface, and evolving two-phase microstructures that depend on interfacial energies (e.g., spinodal decomposition). In the instances of divergence-free random vector fields and statistically anisotropic structures, we show that the standard definition of hyperuniformity must be generalized such that it accounts for the dependence of the relevant spectral functions on the direction in which the origin in Fourier space (nonanalyticities at the origin). Using this analysis, we place some well-known energy spectra from the theory of isotropic turbulence in the context of this generalization of hyperuniformity. We show that there exist many-particle ground-state configurations in which directional hyperuniformity imparts exotic anisotropic physical properties (e.g., elastic, optical and acoustic characteristics) to these states of matter. Such tunablity could have technological relevance for manipulating light and sound waves in ways heretofore not thought possible. We show that disordered many-particle systems that respond to external fields (e.g., magnetic and electric fields) are a natural class of materials to look for directional hyperuniformity.Comment: In pres

    From fracture to fragmentation: discrete element modeling -- Complexity of crackling noise and fragmentation phenomena revealed by discrete element simulations

    Full text link
    Discrete element modelling (DEM) is one of the most efficient computational approaches to the fracture processes of heterogeneous materials on mesoscopic scales. From the dynamics of single crack propagation through the statistics of crack ensembles to the rapid fragmentation of materials DEM had a substantial contribution to our understanding over the past decades. Recently, the combination of DEM with other simulation techniques like Finite Element Modelling further extended the field of applicability. In this paper we briefly review the motivations and basic idea behind the DEM approach to cohesive particulate matter and then we give an overview of on-going developments and applications of the method focusing on two fields where recent success has been achieved. We discuss current challenges of this rapidly evolving field and outline possible future perspectives and debates

    Cooperative surmounting of bottlenecks

    Full text link
    The physics of activated escape of objects out of a metastable state plays a key role in diverse scientific areas involving chemical kinetics, diffusion and dislocation motion in solids, nucleation, electrical transport, motion of flux lines superconductors, charge density waves, and transport processes of macromolecules, to name but a few. The underlying activated processes present the multidimensional extension of the Kramers problem of a single Brownian particle. In comparison to the latter case, however, the dynamics ensuing from the interactions of many coupled units can lead to intriguing novel phenomena that are not present when only a single degree of freedom is involved. In this review we report on a variety of such phenomena that are exhibited by systems consisting of chains of interacting units in the presence of potential barriers. In the first part we consider recent developments in the case of a deterministic dynamics driving cooperative escape processes of coupled nonlinear units out of metastable states. The ability of chains of coupled units to undergo spontaneous conformational transitions can lead to a self-organised escape. The mechanism at work is that the energies of the units become re-arranged, while keeping the total energy conserved, in forming localised energy modes that in turn trigger the cooperative escape. We present scenarios of significantly enhanced noise-free escape rates if compared to the noise-assisted case. The second part deals with the collective directed transport of systems of interacting particles overcoming energetic barriers in periodic potential landscapes. Escape processes in both time-homogeneous and time-dependent driven systems are considered for the emergence of directed motion. It is shown that ballistic channels immersed in the associated high-dimensional phase space are the source for the directed long-range transport

    Evolutionary Granular Kernel Machines

    Get PDF
    Kernel machines such as Support Vector Machines (SVMs) have been widely used in various data mining applications with good generalization properties. Performance of SVMs for solving nonlinear problems is highly affected by kernel functions. The complexity of SVMs training is mainly related to the size of a training dataset. How to design a powerful kernel, how to speed up SVMs training and how to train SVMs with millions of examples are still challenging problems in the SVMs research. For these important problems, powerful and flexible kernel trees called Evolutionary Granular Kernel Trees (EGKTs) are designed to incorporate prior domain knowledge. Granular Kernel Tree Structure Evolving System (GKTSES) is developed to evolve the structures of Granular Kernel Trees (GKTs) without prior knowledge. A voting scheme is also proposed to reduce the prediction deviation of GKTSES. To speed up EGKTs optimization, a master-slave parallel model is implemented. To help SVMs challenge large-scale data mining, a Minimum Enclosing Ball (MEB) based data reduction method is presented, and a new MEB-SVM algorithm is designed. All these kernel methods are designed based on Granular Computing (GrC). In general, Evolutionary Granular Kernel Machines (EGKMs) are investigated to optimize kernels effectively, speed up training greatly and mine huge amounts of data efficiently

    Dirty-boson physics with magnetic insulators

    Get PDF
    We review recent theoretical and experimental efforts aimed at the investigation of the physics of interacting disordered bosons (so-called dirty bosons) in the context of quantum magnetism. The physics of dirty bosons is relevant to a wide variety of condensed matter systems, encompassing Helium in porous media, granular superconductors and ultracold atoms in disordered optical potentials, to cite a few. Nevertheless, the understanding of the transition from a localized, Bose-glass phase to an ordered, superfluid condensate phase still represents a fundamentally open problem. Still to be constructed is also a quantitative description of the highly inhomogeneous and strongly correlated phases connected by the transition. We discuss how disordered magnetic insulators in a strong magnetic field can provide a well controlled realization of the above transition. Combining numerical simulations with experiments on real materials can shed light on some fundamental properties of the critical behavior, such as the scaling of the critical temperature to condensation close to the quantum critical point
    corecore