16,419 research outputs found

    Advancing sustainability in the maritime sector: energy design and optimization of large ships through information modelling and dynamic simulation

    Get PDF
    This paper deals with a new energy design approach for ships to reduce the fuel consumption and the related environmental impact. The proposed method is based on the application of the Building Information Modeling (BIM) to Building Energy Modeling (BEM) technique. Specifically, by a BIM model of the ship a 3D physics-based model (BEM) can be suitably created. Then, by BEM the ship energy performance is simulated under real and dynamic operating conditions. By the presented method the whole design-to-delivery process of the ship can be simplified and speeded up with respect to traditional approaches, without losing reliability. As an example, HVAC systems design is easier through BIM since a high number of thermal zones can be effectively handled. Due to BEM, also the optimal design for exploiting waste heat recoveries of on-board combustion engines is easier and faster. To show the capability of the proposed approach a suitable case study was developed. Basically, it concerns the energy performance analysis of the Allure of the Seas, a 6000-passenger cruise ship operating in the Caribbean Sea. Two different scenarios for recovering the waste heat of the ship diesel generators are investigated. Simulation results highlight that significant primary energy saving can be obtained by optimizing the strategy to recover the available thermal energies (up to 600 MWh per trip), with a remarkable amount of avoided pollutant emissions (58, 0.06, 4.0, 0.2, 2.0 kg/km of CO2, PM2.5, NOx, HC, SOx, respectively).The presented new approach can be easily adopted to design and optimize the energy system of any new or existing ships, with the twofold aim to achieve economic savings and to fulfil environmental sustainability standards

    Sustainable energy: choices, problems and opportunities

    Get PDF
    About the Book: The world's dependence on fossil fuels is widely acknowledged to be a major cause of rising levels of carbon dioxide in the atmosphere. Thus there is an urgent need to develop energy sources with lower environmental impact, with attention focusing on renewable energy sources. Concise, authoritative, up-to-date and readable, this book reviews various energy technologies, as well as taking a critical look at the political, social and economic aspects. Throughout, the emphasis is on renewable energy sources (wind, wave, solar, biomass, etc), but a discussion of fossil fuels and nuclear power is also presented. This timely book, written by recognised experts, will be welcomed by those in the energy industries as well as by policy-makers, consultants and engineers. Students and lecturers will also find the material invaluable

    People centred eco-design: consumer adoption of low and zero carbon products and systems

    Get PDF
    Literature review, research model and findings of exploratory empirical research on consumer adoption and effective use of low and zero carbon technologies ranging from a hybrid car to solar water heating systems

    Electricity Network Scenarios for Great Britain in 2050

    Get PDF
    The next fifty years are likely to see great developments in the technologies deployed in electricity systems, with consequent changes in the structure and operation of power networks. This paper, which forms a chapter in the forthcoming book Future Electricity Technologies and Systems, develops and presents six possible future electricity industry scenarios for Great Britain, focussed on the year 2050. The paper draws upon discussions of important technologies presented by expert authors in other chapters of the book to consider the impact of different combinations of key influences on the nature of the power system in 2050. For each scenario there is a discussion of the effects of the key parameters, with a description and pictorial illustration. Summary tables identify the role of the technologies presented in other chapters of the book, and list important figures of interest, such as the capacity and energy production of renewable generation technologies

    Energy-water-environment nexus underpinning future desalination sustainability

    Get PDF
    Energy-water-environment nexus is very important to attain COP21 goal, maintaining environment temperature increase below 2 °C, but unfortunately two third share of CO2 emission has already been used and the remaining will be exhausted by 2050. A number of technological developments in power and desalination sectors improved their efficiencies to save energy and carbon emission but still they are operating at 35% and 10% of their thermodynamic limits. Research in desalination processes contributing to fuel World population for their improved living standard and to reduce specific energy consumption and to protect environment. Recently developed highly efficient nature-inspired membranes (aquaporin & graphene) and trend in thermally driven cycle's hybridization could potentially lower then energy requirement for water purification. This paper presents a state of art review on energy, water and environment interconnection and future energy efficient desalination possibilities to save energy and protect environment

    An overview of current status of carbon dioxide capture and storage technologies

    Get PDF
    AbstractGlobal warming and climate change concerns have triggered global efforts to reduce the concentration of atmospheric carbon dioxide (CO2). Carbon dioxide capture and storage (CCS) is considered a crucial strategy for meeting CO2 emission reduction targets. In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis. The selection of specific CO2 capture technology heavily depends on the type of CO2 generating plant and fuel used. Among those CO2 separation processes, absorption is the most mature and commonly adopted due to its higher efficiency and lower cost. Pipeline is considered to be the most viable solution for large volume of CO2 transport. Among those geological formations for CO2 storage, enhanced oil recovery is mature and has been practiced for many years but its economical viability for anthropogenic sources needs to be demonstrated. There are growing interests in CO2 storage in saline aquifers due to their enormous potential storage capacity and several projects are in the pipeline for demonstration of its viability. There are multiple hurdles to CCS deployment including the absence of a clear business case for CCS investment and the absence of robust economic incentives to support the additional high capital and operating costs of the whole CCS process

    Climate change mitigation by means of sustainable development of energy, water and environment systems

    Get PDF
    Integrated approaches in energy, water and environmental systems can improve the climate change reduction process. New scientific developments and advancements have provided numerous opportunities in the comprehensive human progress direction. In this regard, we have reviewed the 16th Conference on Sustainable Development of Energy, Water and Environment Systems presented in this editorial. Examining recent scientific developments, eight research articles on this special issue are related to eight main topics. The solar energy technology and storage section reviewed the first four articles. These articles include topics such as: 1) advanced technologies to form a new TT PS-TIM window system for adaptive daylight control and advanced thermal insulation combination, 2) using experimental data for field testing located in an area with Mediterranean climate conditions, of newly installed FPVS in these areas, 3) possibilities described in short rotation of willow type and energy crop Miscanthus cultivation dedicated to former coal mining areas, 4) using solar and geothermal energy with boiling water purification and reverse osmosis. Furthermore, the following four articles are reviewed in the energy management systems section. These articles include topics such as, 5) deep analysis of facial expression and eye tracking using samples of non-expert participants to determine emotions caused by electricity consumption graphs in different time scales, 6) studying the electric vehicles (EVs) main life cycle activities using an exploratory survey and their potential inequities, 7) the biodiesel fuel production from waste sardine fish oil using methanol, ethanol or isopropanol and a solid heterogeneous catalyst prepared using eggshell and copper oxide [CaCu(OCH3)2] is analyzed. Finally, 8) biotechnology microalgae have been studied in 70-litre vertical photobioreactors that use unsupplemented secondary brewery wastewater as growth media using two collecting cells mechanically methods under hydrothermal (autohydrolysis) and dilute acid hydrolysis

    Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications

    Get PDF
    The COVID-19 pandemic has had a significant impact on the supply chains of traditional fossil fuels. According to a report by the International Energy Agency (IEA) from 2020, oil-refining activity fell by more than the IEA had anticipated. It was also assumed that the demand in 2021 would likely be 2.6 million bpd below the 2019 levels. However, renewable markets have shown strong resilience during the crisis. It was determined that renewables are on track to meet 80% of the growth in electricity demand over the next 10 years and that sustainable energy will act as the primary source of electricity production instead of coal. On the other hand, the report also emphasized that measures for reducing environmental pollution and CO2 emissions are still insufficient and that significant current investments should be further expanded. The Sustainable Development of Energy, Water and Environment Systems (SDEWES) conference series is dedicated to the advancement and dissemination of knowledge on methods, policies and technologies for improving the sustainability of development by decoupling growth from the use of natural resources. The 15th SDEWES conference was held online from 1–5 September 2020; more than 300 reports with 7 special sections were organized on the virtual conference platform. This paper presents the major achievements of the recommended papers in the Special Issue of Energies. Additionally, related studies connected to the above papers published in the SDEWES series are also introduced, including the four main research fields of energy saving and emission reduction, renewable energy applications, the development of district heating systems, and the economic assessment of sustainable energy

    Assessing the techno-economic viability of a trigeneration system integrating ammonia-fuelled solid oxide fuel cell

    Get PDF
    In recent years, ammonia has gained traction as a clean fuel alternative and a promising energy carrier. In this study, a trigeneration system fuelled by ammonia has been conceptualised, integrating a solid oxide fuel cell stack for power generation, a hot water unit for heating, and an NH3-H2O absorption chiller for cooling. The main objective of this study is to conduct a comprehensive techno-economic feasibility assessment of the proposed trigeneration system. The system's performance was analysed for a UK supermarket requiring electricity, heating, and cooling. A detailed sensitivity analysis was performed to investigate the influence of significant operating parameters, including current density, fuel utilisation factor, and cell temperature, on the system's performance. The system can deliver maximum power, heating, and cooling outputs of 357.6 kW, 257.9 kW, and 46.99 kW, respectively. The trigeneration system is projected to achieve its highest exergy efficiency at 60.94%, with a maximum fuel energy saving ratio of 47.67%. The lowest levelised cost of energy (LCOE) is estimated to be £0.1232 per kWh. This study's objective is also aligned with United Nations Sustainable Development Goal (SDG) No. 7, which aims to achieve “Affordable and Clean Energy”
    • 

    corecore