4,594 research outputs found

    A MPC Strategy for the Optimal Management of Microgrids Based on Evolutionary Optimization

    Get PDF
    In this paper, a novel model predictive control strategy, with a 24-h prediction horizon, is proposed to reduce the operational cost of microgrids. To overcome the complexity of the optimization problems arising from the operation of the microgrid at each step, an adaptive evolutionary strategy with a satisfactory trade-off between exploration and exploitation capabilities was added to the model predictive control. The proposed strategy was evaluated using a representative microgrid that includes a wind turbine, a photovoltaic plant, a microturbine, a diesel engine, and an energy storage system. The achieved results demonstrate the validity of the proposed approach, outperforming a global scheduling planner-based on a genetic algorithm by 14.2% in terms of operational cost. In addition, the proposed approach also better manages the use of the energy storage system.Ministerio de Economía y Competitividad DPI2016-75294-C2-2-RUnión Europea (Programa Horizonte 2020) 76409

    Risk-Aware Management of Distributed Energy Resources

    Full text link
    High wind energy penetration critically challenges the economic dispatch of current and future power systems. Supply and demand must be balanced at every bus of the grid, while respecting transmission line ratings and accounting for the stochastic nature of renewable energy sources. Aligned to that goal, a network-constrained economic dispatch is developed in this paper. To account for the uncertainty of renewable energy forecasts, wind farm schedules are determined so that they can be delivered over the transmission network with a prescribed probability. Given that the distribution of wind power forecasts is rarely known, and/or uncertainties may yield non-convex feasible sets for the power schedules, a scenario approximation technique using Monte Carlo sampling is pursued. Upon utilizing the structure of the DC optimal power flow (OPF), a distribution-free convex problem formulation is derived whose complexity scales well with the wind forecast sample size. The efficacy of this novel approach is evaluated over the IEEE 30-bus power grid benchmark after including real operation data from seven wind farms.Comment: To appear in Proc. of 18th Intl. Conf. on DSP, Santorini Island, Greece, July 1-3, 201

    Optimization approaches for exploiting the load flexibility of electric heating devices in smart grids

    Get PDF
    Energy systems all over the world are undergoing a fundamental transition to tackle climate change and other environmental challenges. The share of electricity generated by renewable energy sources has been steadily increasing. In order to cope with the intermittent nature of renewable energy sources, like photovoltaic systems and wind turbines, the electrical demand has to be adjusted to their power generation. To this end, flexible electrical loads are necessary. Moreover, optimization approaches and advanced information and communication technology can help to transform the traditional electricity grid into a smart grid. To shift the electricity consumption in time, electric heating devices, such as heat pumps or electric water heaters, provide significant flexibility. In order to exploit this flexibility, optimization approaches for controlling flexible devices are essential. Most studies in the literature use centralized optimization or uncoordinated decentralized optimization. Centralized optimization has crucial drawbacks regarding computational complexity, privacy, and robustness, but uncoordinated decentralized optimization leads to suboptimal results. In this thesis, coordinated decentralized and hybrid optimization approaches with low computational requirements are developed for exploiting the flexibility of electric heating devices. An essential feature of all developed methods is that they preserve the privacy of the residents. This cumulative thesis comprises four papers that introduce different types of optimization approaches. In Paper A, rule-based heuristic control algorithms for modulating electric heating devices are developed that minimize the heating costs of a residential area. Moreover, control algorithms for minimizing surplus energy that otherwise could be curtailed are introduced. They increase the self-consumption rate of locally generated electricity from photovoltaics. The heuristic control algorithms use a privacy-preserving control and communication architecture that combines centralized and decentralized control approaches. Compared to a conventional control strategy, the results of simulations show cost reductions of between 4.1% and 13.3% and reductions of between 38.3% and 52.6% regarding the surplus energy. Paper B introduces two novel coordinating decentralized optimization approaches for scheduling-based optimization. A comparison with different decentralized optimization approaches from the literature shows that the developed methods, on average, lead to 10% less surplus energy. Further, an optimization procedure is defined that generates a diverse solution pool for the problem of maximizing the self-consumption rate of locally generated renewable energy. This solution pool is needed for the coordination mechanisms of several decentralized optimization approaches. Combining the decentralized optimization approaches with the defined procedure to generate diverse solution pools, on average, leads to 100 kWh (16.5%) less surplus energy per day for a simulated residential area with 90 buildings. In Paper C, another decentralized optimization approach that aims to minimize surplus energy and reduce the peak load in a local grid is developed. Moreover, two methods that distribute a central wind power profile to the different buildings of a residential area are introduced. Compared to the approaches from the literature, the novel decentralized optimization approach leads to improvements of between 0.8% and 13.3% regarding the surplus energy and the peak load. Paper D introduces uncertainty handling control algorithms for modulating electricheating devices. The algorithms can help centralized and decentralized scheduling-based optimization approaches to react to erroneous predictions of demand and generation. The analysis shows that the developed methods avoid violations of the residents\u27 comfort limits and increase the self-consumption rate of electricity generated by photovoltaic systems. All introduced optimization approaches yield a good trade-off between runtime and the quality of the results. Further, they respect the privacy of residents, lead to better utilization of renewable energy, and stabilize the grid. Hence, the developed optimization approaches can help future energy systems to cope with the high share of intermittent renewable energy sources

    Hybrid ant colony system algorithm for static and dynamic job scheduling in grid computing

    Get PDF
    Grid computing is a distributed system with heterogeneous infrastructures. Resource management system (RMS) is one of the most important components which has great influence on the grid computing performance. The main part of RMS is the scheduler algorithm which has the responsibility to map submitted tasks to available resources. The complexity of scheduling problem is considered as a nondeterministic polynomial complete (NP-complete) problem and therefore, an intelligent algorithm is required to achieve better scheduling solution. One of the prominent intelligent algorithms is ant colony system (ACS) which is implemented widely to solve various types of scheduling problems. However, ACS suffers from stagnation problem in medium and large size grid computing system. ACS is based on exploitation and exploration mechanisms where the exploitation is sufficient but the exploration has a deficiency. The exploration in ACS is based on a random approach without any strategy. This study proposed four hybrid algorithms between ACS, Genetic Algorithm (GA), and Tabu Search (TS) algorithms to enhance the ACS performance. The algorithms are ACS(GA), ACS+GA, ACS(TS), and ACS+TS. These proposed hybrid algorithms will enhance ACS in terms of exploration mechanism and solution refinement by implementing low and high levels hybridization of ACS, GA, and TS algorithms. The proposed algorithms were evaluated against twelve metaheuristic algorithms in static (expected time to compute model) and dynamic (distribution pattern) grid computing environments. A simulator called ExSim was developed to mimic the static and dynamic nature of the grid computing. Experimental results show that the proposed algorithms outperform ACS in terms of best makespan values. Performance of ACS(GA), ACS+GA, ACS(TS), and ACS+TS are better than ACS by 0.35%, 2.03%, 4.65% and 6.99% respectively for static environment. For dynamic environment, performance of ACS(GA), ACS+GA, ACS+TS, and ACS(TS) are better than ACS by 0.01%, 0.56%, 1.16%, and 1.26% respectively. The proposed algorithms can be used to schedule tasks in grid computing with better performance in terms of makespan
    corecore