759 research outputs found

    Incremental refinement of image salient-point detection

    Get PDF
    Low-level image analysis systems typically detect "points of interest", i.e., areas of natural images that contain corners or edges. Most of the robust and computationally efficient detectors proposed for this task use the autocorrelation matrix of the localized image derivatives. Although the performance of such detectors and their suitability for particular applications has been studied in relevant literature, their behavior under limited input source (image) precision or limited computational or energy resources is largely unknown. All existing frameworks assume that the input image is readily available for processing and that sufficient computational and energy resources exist for the completion of the result. Nevertheless, recent advances in incremental image sensors or compressed sensing, as well as the demand for low-complexity scene analysis in sensor networks now challenge these assumptions. In this paper, we investigate an approach to compute salient points of images incrementally, i.e., the salient point detector can operate with a coarsely quantized input image representation and successively refine the result (the derived salient points) as the image precision is successively refined by the sensor. This has the advantage that the image sensing and the salient point detection can be terminated at any input image precision (e.g., bound set by the sensory equipment or by computation, or by the salient point accuracy required by the application) and the obtained salient points under this precision are readily available. We focus on the popular detector proposed by Harris and Stephens and demonstrate how such an approach can operate when the image samples are refined in a bitwise manner, i.e., the image bitplanes are received one-by-one from the image sensor. We estimate the required energy for image sensing as well as the computation required for the salient point detection based on stochastic source modeling. The computation and energy required by the proposed incremental refinement approach is compared against the conventional salient-point detector realization that operates directly on each source precision and cannot refine the result. Our experiments demonstrate the feasibility of incremental approaches for salient point detection in various classes of natural images. In addition, a first comparison between the results obtained by the intermediate detectors is presented and a novel application for adaptive low-energy image sensing based on points of saliency is presented

    Building Deep Networks on Grassmann Manifolds

    Full text link
    Learning representations on Grassmann manifolds is popular in quite a few visual recognition tasks. In order to enable deep learning on Grassmann manifolds, this paper proposes a deep network architecture by generalizing the Euclidean network paradigm to Grassmann manifolds. In particular, we design full rank mapping layers to transform input Grassmannian data to more desirable ones, exploit re-orthonormalization layers to normalize the resulting matrices, study projection pooling layers to reduce the model complexity in the Grassmannian context, and devise projection mapping layers to respect Grassmannian geometry and meanwhile achieve Euclidean forms for regular output layers. To train the Grassmann networks, we exploit a stochastic gradient descent setting on manifolds of the connection weights, and study a matrix generalization of backpropagation to update the structured data. The evaluations on three visual recognition tasks show that our Grassmann networks have clear advantages over existing Grassmann learning methods, and achieve results comparable with state-of-the-art approaches.Comment: AAAI'18 pape

    Learning Discriminative Stein Kernel for SPD Matrices and Its Applications

    Full text link
    Stein kernel has recently shown promising performance on classifying images represented by symmetric positive definite (SPD) matrices. It evaluates the similarity between two SPD matrices through their eigenvalues. In this paper, we argue that directly using the original eigenvalues may be problematic because: i) Eigenvalue estimation becomes biased when the number of samples is inadequate, which may lead to unreliable kernel evaluation; ii) More importantly, eigenvalues only reflect the property of an individual SPD matrix. They are not necessarily optimal for computing Stein kernel when the goal is to discriminate different sets of SPD matrices. To address the two issues in one shot, we propose a discriminative Stein kernel, in which an extra parameter vector is defined to adjust the eigenvalues of the input SPD matrices. The optimal parameter values are sought by optimizing a proxy of classification performance. To show the generality of the proposed method, three different kernel learning criteria that are commonly used in the literature are employed respectively as a proxy. A comprehensive experimental study is conducted on a variety of image classification tasks to compare our proposed discriminative Stein kernel with the original Stein kernel and other commonly used methods for evaluating the similarity between SPD matrices. The experimental results demonstrate that, the discriminative Stein kernel can attain greater discrimination and better align with classification tasks by altering the eigenvalues. This makes it produce higher classification performance than the original Stein kernel and other commonly used methods.Comment: 13 page

    Fast and accurate image and video analysis on Riemannian manifolds

    Get PDF

    The Role of Riemannian Manifolds in Computer Vision: From Coding to Deep Metric Learning

    Get PDF
    A diverse number of tasks in computer vision and machine learning enjoy from representations of data that are compact yet discriminative, informative and robust to critical measurements. Two notable representations are offered by Region Covariance Descriptors (RCovD) and linear subspaces which are naturally analyzed through the manifold of Symmetric Positive Definite (SPD) matrices and the Grassmann manifold, respectively, two widely used types of Riemannian manifolds in computer vision. As our first objective, we examine image and video-based recognition applications where the local descriptors have the aforementioned Riemannian structures, namely the SPD or linear subspace structure. Initially, we provide a solution to compute Riemannian version of the conventional Vector of Locally aggregated Descriptors (VLAD), using geodesic distance of the underlying manifold as the nearness measure. Next, by having a closer look at the resulting codes, we formulate a new concept which we name Local Difference Vectors (LDV). LDVs enable us to elegantly expand our Riemannian coding techniques to any arbitrary metric as well as provide intrinsic solutions to Riemannian sparse coding and its variants when local structured descriptors are considered. We then turn our attention to two special types of covariance descriptors namely infinite-dimensional RCovDs and rank-deficient covariance matrices for which the underlying Riemannian structure, i.e. the manifold of SPD matrices is out of reach to great extent. %Generally speaking, infinite-dimensional RCovDs offer better discriminatory power over their low-dimensional counterparts. To overcome this difficulty, we propose to approximate the infinite-dimensional RCovDs by making use of two feature mappings, namely random Fourier features and the Nystrom method. As for the rank-deficient covariance matrices, unlike most existing approaches that employ inference tools by predefined regularizers, we derive positive definite kernels that can be decomposed into the kernels on the cone of SPD matrices and kernels on the Grassmann manifolds and show their effectiveness for image set classification task. Furthermore, inspired by attractive properties of Riemannian optimization techniques, we extend the recently introduced Keep It Simple and Straightforward MEtric learning (KISSME) method to the scenarios where input data is non-linearly distributed. To this end, we make use of the infinite dimensional covariance matrices and propose techniques towards projecting on the positive cone in a Reproducing Kernel Hilbert Space (RKHS). We also address the sensitivity issue of the KISSME to the input dimensionality. The KISSME algorithm is greatly dependent on Principal Component Analysis (PCA) as a preprocessing step which can lead to difficulties, especially when the dimensionality is not meticulously set. To address this issue, based on the KISSME algorithm, we develop a Riemannian framework to jointly learn a mapping performing dimensionality reduction and a metric in the induced space. Lastly, in line with the recent trend in metric learning, we devise end-to-end learning of a generic deep network for metric learning using our derivation
    • …
    corecore