153 research outputs found

    Active modelling of virtual humans

    Get PDF
    This thesis provides a complete framework that enables the creation of photorealistic 3D human models in real-world environments. The approach allows a non-expert user to use any digital capture device to obtain four images of an individual and create a personalised 3D model, for multimedia applications. To achieve this, it is necessary that the system is automatic and that the reconstruction process is flexible to account for information that is not available or incorrectly captured. In this approach the individual is automatically extracted from the environment using constrained active B-spline templates that are scaled and automatically initialised using only image information. These templates incorporate the energy minimising framework for Active Contour Models, providing a suitable and flexible method to deal with the adjustments in pose an individual can adopt. The final states of the templates describe the individual’s shape. The contours in each view are combined to form a 3D B-spline surface that characterises an individual’s maximal silhouette equivalent. The surface provides a mould that contains sufficient information to allow for the active deformation of an underlying generic human model. This modelling approach is performed using a novel technique that evolves active-meshes to 3D for deforming the underlying human model, while adaptively constraining it to preserve its existing structure. The active-mesh approach incorporates internal constraints that maintain the structural relationship of the vertices of the human model, while external forces deform the model congruous to the 3D surface mould. The strength of the internal constraints can be reduced to allow the model to adopt the exact shape of the bounding volume or strengthened to preserve the internal structure, particularly in areas of high detail. This novel implementation provides a uniform framework that can be simply and automatically applied to the entire human model

    Vessel identification in diabetic retinopathy

    Get PDF
    Diabetic retinopathy is the single largest cause of sight loss and blindness in 18 to 65 year olds. Screening programs for the estimated one to six per- cent of the diabetic population have been demonstrated to be cost and sight saving, howeverthere are insufficient screening resources. Automatic screen-ing systems may help solve this resource short fall. This thesis reports on research into an aspect of automatic grading of diabetic retinopathy; namely the identification of the retinal blood vessels in fundus photographs. It de-velops two vessels segmentation strategies and assess their accuracies. A literature review of retinal vascular segmentation found few results, and indicated a need for further development. The two methods for vessel segmentation were investigated in this thesis are based on mathematical morphology and neural networks. Both methodologies are verified on independently labeled data from two institutions and results are presented that characterisethe trade off betweenthe ability to identify vesseland non-vessels data. These results are based on thirty five images with their retinal vessels labeled. Of these images over half had significant pathology and or image acquisition artifacts. The morphological segmentation used ten images from one dataset for development. The remaining images of this dataset and the entire set of 20 images from the seconddataset were then used to prospectively verify generaliastion. For the neural approach, the imageswere pooled and 26 randomly chosenimageswere usedin training whilst 9 were reserved for prospective validation. Assuming equal importance, or cost, for vessel and non-vessel classifications, the following results were obtained; using mathematical morphology 84% correct classification of vascular and non-vascular pixels was obtained in the first dataset. This increased to 89% correct for the second dataset. Using the pooled data the neural approach achieved 88% correct identification accuracy. The spread of accuracies observed varied. It was highest in the small initial dataset with 16 and 10 percent standard deviation in vascular and non-vascular cases respectively. The lowest variability was observed in the neural classification, with a standard deviation of 5% for both accuracies. The less tangible outcomes of the research raises the issueof the selection and subsequent distribution of the patterns for neural network training. Unfortunately this indication would require further labeling of precisely those cases that were felt to be the most difficult. I.e. the small vessels and border conditions between pathology and the retina. The more concrete, evidence based conclusions,characterise both the neural and the morphological methods over a range of operating points. Many of these operating points are comparable to the few results presented in the literature. The advantage of the author's approach lies in the neural method's consistent as well as accurate vascular classification

    Construction of a duck whole genome radiation hybrid panel : an aid for NGS whole genome assembly and a contribution to avian comparative maps

    Get PDF
    Le canard est une espÚce d'importance agronomique en France, principalement à travers l'industrie de foie gras, qui représente plus de 75% de la production mondiale. De plus, c'est aussi un modÚle important pour l'étude de l'infection par le virus influenza, pour lequel les oiseaux aquatiques sont un réservoir naturel, car porteurs asymptomatiques. Les travaux réalisés lors de la thÚse se situent dans le contexte international de l'étude du génome du canard, comportant la séquence du génome, le séquençage d'EST et l'identification et la cartographie de SNP. Le but à terme pour l'INRA étant de disposer des connaissances sur le génome nécessaires pour la cartographie fine de QTL et l'identification de gÚnes impliqués dans l'expression de caractÚres agronomiques. Un panel de 90 d'hybrides irradiés (panel RH) a été réalisé par fusion de cellules donneuses de canard irradiées avec des cellules receveuses de hamster. Afin d'éviter la culture à grande échelle des clones cellulaires, des méthodes de génotypage par PCR utilisant l'amplification complÚte du génome (WGA) et/ou la réduction des volumes réactionnels ont été testées et deux premiÚres cartes de chromosomes ont ainsi été réalisées. Nous avons également utilisé le génotypage par PCR pour vérifier la qualité de l'assemblage des scaffolds du génome du canard, réalisés par séquençage nouvelle génération Illumina au Beijing Genome Institute (BGI, Chine). Finalement, afin de couvrir le génome complet, nous avons entrepris un séquençage léger (0,1X de profondeur) d'hybrides, permettant une réalisation de cartes plus rapides que par PCR. Ces cartes permettent la détection des réarrangements chromosomiques existant entre les génomes de la poule et du canard, qui sont distants de 80 millions d'années.Duck is a very important agronomic species in France, especially for fatty liver industry which presents 75% worldwide production. Moreover, duck is also a scientific model for avian influenza research as it is a natural reservoir for avian influenza viruses. The work presented here is part of the international collaboration on duck genome sequencing, including SNP detection and mapping, EST sequencing. Our goal is to provide a genome map allowing for fine mapping QTL and identifying candidate genes involved in expression of agronomic traits. A panel composed of 90 radiation hybrids was produced by fusing irradiated duck donor cells with hamster cells. To avoid large-scale culture of the clones, PCR genotyping involving Whole Genome Amplification (WGA) and/or reduction of reaction volumes were tested and two first maps for duck chromosomes were made. We also used the PCR genotyping method to test for the quality of duck sequence scaffold assemblies, which had been produced by the Beijing Genome Institute (BGI, China). Finally, to cover the whole genome, we performed a low-pass sequencing (0.1X depth) of hybrids, allowing for rapid map development. These maps allow the detection of chromosomal rearrangements that have taken place between the duck and chicken genomes, which have diverged 80 million years ago

    Vessel identification in diabetic retinopathy

    Get PDF
    Diabetic retinopathy is the single largest cause of sight loss and blindness in 18 to 65 year olds. Screening programs for the estimated one to six per- cent of the diabetic population have been demonstrated to be cost and sight saving, howeverthere are insufficient screening resources. Automatic screen-ing systems may help solve this resource short fall. This thesis reports on research into an aspect of automatic grading of diabetic retinopathy; namely the identification of the retinal blood vessels in fundus photographs. It de-velops two vessels segmentation strategies and assess their accuracies. A literature review of retinal vascular segmentation found few results, and indicated a need for further development. The two methods for vessel segmentation were investigated in this thesis are based on mathematical morphology and neural networks. Both methodologies are verified on independently labeled data from two institutions and results are presented that characterisethe trade off betweenthe ability to identify vesseland non-vessels data. These results are based on thirty five images with their retinal vessels labeled. Of these images over half had significant pathology and or image acquisition artifacts. The morphological segmentation used ten images from one dataset for development. The remaining images of this dataset and the entire set of 20 images from the seconddataset were then used to prospectively verify generaliastion. For the neural approach, the imageswere pooled and 26 randomly chosenimageswere usedin training whilst 9 were reserved for prospective validation. Assuming equal importance, or cost, for vessel and non-vessel classifications, the following results were obtained; using mathematical morphology 84% correct classification of vascular and non-vascular pixels was obtained in the first dataset. This increased to 89% correct for the second dataset. Using the pooled data the neural approach achieved 88% correct identification accuracy. The spread of accuracies observed varied. It was highest in the small initial dataset with 16 and 10 percent standard deviation in vascular and non-vascular cases respectively. The lowest variability was observed in the neural classification, with a standard deviation of 5% for both accuracies. The less tangible outcomes of the research raises the issueof the selection and subsequent distribution of the patterns for neural network training. Unfortunately this indication would require further labeling of precisely those cases that were felt to be the most difficult. I.e. the small vessels and border conditions between pathology and the retina. The more concrete, evidence based conclusions,characterise both the neural and the morphological methods over a range of operating points. Many of these operating points are comparable to the few results presented in the literature. The advantage of the author's approach lies in the neural method's consistent as well as accurate vascular classification.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    MPEG-4 content creation: integration of MPEG-4 content creation tools into an existing animation tool

    Get PDF
    This thesis provides a complete framework that enables the creation of photorealistic 3D human models in real-world environments. The approach allows a non-expert user to use any digital capture device to obtain four images of an individual and create a personalised 3D model, for multimedia applications. To achieve this, it is necessary that the system is automatic and that the reconstruction process is flexible to account for information that is not available or incorrectly captured. In this approach the individual is automatically extracted from the environment using constrained active B-spline templates that are scaled and automatically initialised using only image information. These templates incorporate the energy minimising framework for Active Contour Models, providing a suitable and flexible method to deal with the adjustments in pose an individual can adopt. The final states o f the templates describe the individual’s shape. The contours in each view are combined to form a 3D B-spline surface that characterises an individual’s maximal silhouette equivalent. The surface provides a mould that contains sufficient information to allow for the active deformation of an underlying generic human model. This modelling approach is performed using a novel technique that evolves active-meshes to 3D for deforming the underlying human model, while adaptively constraining it to preserve its existing structure. The active-mesh approach incorporates internal constraints that maintain the structural relationship of the vertices of the human model, while external forces deform the model congruous to the 3D surface mould. The strength of the internal constraints can be reduced to allow the model to adopt the exact shape o f the bounding volume or strengthened to preserve the internal structure, particularly in areas of high detail. This novel implementation provides a uniform framework that can be simply and automatically applied to the entire human model
    • 

    corecore