722 research outputs found

    Routing in mobile Ad Hoc Networks

    Get PDF
    A Mobile Ad Hoc Network (MANET) is built on the fly where a number of wireless mobile nodes work in cooperation without the engagement of any centralized access point or any fixed infrastructure. Two nodes in such a network can communicate in a bidirectional manner if and only if the distance between them is at most the minimum of their transmission ranges. When a node wants to communicate with a node outside its transmission range, a multihop routing strategy is used which involves some intermediate nodes. Because of the movements of nodes, there is a constant possibility of topology change in MANET. Considering this unique aspect of MANET, a number of routing protocols have been proposed so far. This chapter gives an overview of the past, current, and future research areas for routing in MANET. In this chapter we will learn about the following things: - The preliminaries of mobile ad hoc network - The challenges for routing in MANET - Expected properties of a MANET routing protocol - Categories of routing protocols for MANET - Major routing protocols for MANET - Criteria for performance comparison of the routing protocols for MANET - Achievements and future research directions - Expectations and realit

    A Secure and Efficient Communications Architecture for Global Information Grid Users via Cooperating Space Assets

    Get PDF
    With the Information Age in full and rapid development, users expect to have global, seamless, ubiquitous, secure, and efficient communications capable of providing access to real-time applications and collaboration. The United States Department of Defense’s (DoD) Network-Centric Enterprise Services initiative, along with the notion of pushing the “power to the edge,” aims to provide end-users with maximum situational awareness, a comprehensive view of the battlespace, all within a secure networking environment. Building from previous AFIT research efforts, this research developed a novel security framework architecture to address the lack of efficient and scalable secure multicasting in the low earth orbit satellite network environment. This security framework architecture combines several key aspects of different secure group communications architectures in a new way that increases efficiency and scalability, while maintaining the overall system security level. By implementing this security architecture in a deployed environment with heterogeneous communications users, reduced re-keying frequency will result. Less frequent re-keying means more resources are available for throughput as compared to security overhead. This translates to more transparency to the end user; it will seem as if they have a “larger pipe” for their network links. As a proof of concept, this research developed and analyzed multiple mobile communication environment scenarios to demonstrate the superior re-keying advantage offered by the novel “Hubenko Security Framework Architecture” over traditional and clustered multicast security architectures. For example, in the scenario containing a heterogeneous mix of user types (Stationary, Ground, Sea, and Air), the Hubenko Architecture achieved a minimum ten-fold reduction in total keys distributed as compared to other known architectures. Another experiment demonstrated the Hubenko Architecture operated at 6% capacity while the other architectures operated at 98% capacity. In the 80% overall mobility experiment with 40% Air users, the other architectures re-keying increased 900% over the Stationary case, whereas the Hubenko Architecture only increased 65%. This new architecture is extensible to numerous secure group communications environments beyond the low earth orbit satellite network environment, including unmanned aerial vehicle swarms, wireless sensor networks, and mobile ad hoc networks

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan
    • …
    corecore